Feladat: 750. matematika feladat Korcsoport: 16-17 Nehézségi fok: átlagos
Megoldó(k):  Bayer B. ,  Benedek Zs. ,  Burján K. ,  Czank K. ,  Demeter J. ,  Faith F. ,  Filkorn J. ,  Grosz K. ,  Hein I. ,  Holzmann J. M. ,  Kende B. ,  Kerekes T. ,  Kertész G. ,  Klein S. ,  Kőnig Dénes ,  Krausz B. ,  Krisztián Gy. ,  Krumpschink K. ,  Lukhaub Gy. ,  Lupsa Gy. ,  Messik G. ,  Messik V. ,  Perl Gy. ,  Póka Gy. ,  Rosenberg Á. ,  Russo M. ,  Sasvári G. ,  Sasvári J. ,  Scharff. J. ,  Scheuer R. ,  Selényi M. ,  Singer A. ,  Smodits K. ,  Stromfeld F. ,  Szmodics H. ,  Tézner E. ,  Weisz A. 
Füzet: 1900/február, 116 - 117. oldal  PDF file
Témakör(ök): Másodfokú (és arra visszavezethető) egyenletek, Gyökök és együtthatók közötti összefüggések, Paraméteres egyenletek, Nevezetes azonosságok, Feladat
Hivatkozás(ok):Feladatok: 1899/november: 750. matematika feladat

Legyenek az
x2-(a+d)x+ad-bc=0
egyenletnek gyökei x1 és x2; bizonyíttassék be, hogy akkor az
y2-(a3+d3+3abc+3bcd)y+(ad-bc)3=0
egyenletnek gyökei: x13 és x23.

A szöveg csak Firefox böngészőben jelenik meg helyesen. Használja a fenti PDF file-ra mutató link-et a letöltésre.

Minthogy x1 és x2 az első egyenletnek két gyöke, azért

x1+x2=a+désx1x2=ad-bc.(1)
De
x13+x23=(x1+x2)3-3x1x2(x1+x2)
s így az (1) alatti összefüggéseket tekintetbe véve:
x13+x23=a3+3a2d+3ad2+d3-3(ad-bc)(a+d)
=a3+3a2d+3ad2+d3-3a2d-3ad2-3ad2+3abc+3bcd
=a3+d3+3abc+3bcd.
Továbbá
x13x23=(ad-bc)3.
Látjuk tehát, hogy x13+x23, y-nak együtthatója ellenkező jellel, x13x23 pedig a második egyenlet tiszta tagja s így x13 és x23 csakugyan gyökei a második egyenletnek.
 
(König Dénes, Budapest.)

 
A feladatot még megoldották: Bayer B., Benedek Zs., Burján K., Czank K., Demeter J., Faith F., Filkorn J., Grosz K., Hein I., Holzmann J.M., Kende B., Kerekes T., Kertész G., Klein S., Krausz B., Krisztián Gy., Krumpschink K., Lukhaub Gy., Lupsa Gy., Messik G., Messik V., Perl Gy., Póka Gy., Rosenberg Á., Russo M., Sasvári G., Sasvári J., Scharff J., Scheuer R., Selényi M., Singer A., Smodits K., Stromfeld F., Szmodics H., Tézner E., Weisz A.