| A szöveg csak Firefox böngészőben jelenik meg helyesen. Használja a fenti PDF file-ra mutató link-et a letöltésre. 3. feladat. Miért olyan nagyok a csillagok?
  A csillagok forró gázgömbök, melyek ragyogását a belsejükben lezajló magfúzió adja. Leggyakoribb esetben e folyamat során hidrogénből hélium keletkezik. Ebben a problémában klasszikus mechanikai, illetve kvantummechanikai fogalmak, valamint elektrosztatikai, termodinamikai összefüggések segítségével keressük a választ arra a kérdésre, hogy a gázgömbnek miért csak egy bizonyos mérete fölött indul be a fúziós reakció. Sőt, a hidrogén fúziójához szükséges kritikus tömeg és sugár értékét is meghatározzuk. (A Napról, mint csillagról látható kép a hátsó belső borítón jobbra középen.) Fontos fizikai állandók:
 gravitációs állandó: ;
 Boltzmann-állandó: ;
 Planck-állandó: ;
 proton tömege:  kg;
 elektron tömege:  kg;
 elemi töltés:  C;
 vákuum permittivitás: ;
 Nap sugara:  m;
 Nap tömege:  kg.
 
  1. Csillagok központi hőmérsékletének klasszikus becslése Tegyük föl, hogy a csillagot formáló gáz tiszta ionizált hidrogén, azaz elektronok és protonok azonos arányú keveréke, mely ideális gázként viselkedik. A klasszikus fizika törvényei szerint két proton fúziójához az szükséges, hogy  méternél közelebb kerüljenek egymáshoz, mivel csak ilyen kis távolság esetén válik a rövidtávú magerő meghatározóvá. Azonban ahhoz, hogy ilyen közel kerüljenek egymáshoz, le kell győzniük a Coulomb-taszítást. Tegyük fel, hogy két klasszikus, pontszerű részecskének tekintett proton  nagyságú, egymással ellentétes irányú sebességgel halad egymás felé egy egyenes mentén, és frontálisan ütközik. Itt  a termodinamikai átlagsebesség (sebességnégyzet átlagának a gyöke; az index az angol root-mean-square kifejezésre utal).
 1.a. Határozd meg azt a kritikus  hőmérsékletet, amely esetén két ütköző proton közti minimális  távolság éppen  m! A keresett értéket, és ebben a feladatban minden további számszerű eredményt két értékes jegyre adj meg!
 
  2. Annak igazolása, hogy az előző hőmérséklet-becslés hibás Ahhoz, hogy ellenőrizzük előző becslésünk megbízhatóságát, még egy független módszerre van szükségünk a csillagok központi hőmérsékletének meghatározására. Egy valódi csillag felépítése meglehetősen bonyolult, de néhány egyszerűsítő feltevés használatával a lényeget könnyen megérthetjük. A csillagok egyensúlyban vannak, ami azt jelenti, hogy se nem tágulnak, se nem húzódnak össze, mert a befelé mutató gravitációs erő egyensúlyt tart a kifelé mutató nyomással (6. ábra). Egy, a középponttól  távolságban levő gázréteg hidrosztatikai egyensúlyát a  egyenlet fejezi ki, ahol  a gáz nyomása,  a gravitációs állandó,  a csillag  sugarú gömbön belül eső részének tömege,  pedig a gázréteg sűrűsége.
 
      6. ábra.  A csillagok hidrosztatikai egyensúlyban vannak, a nyomás-változással a gravitáció tart egyensúlyt   A csillag központi hőmérsékletére nagyságrendi becslést kaphatunk, ha a paramétereknek a középpontban és a csillag felszínén felvett értékét használjuk, tehát a következő közelítésekkel élünk:  ahol  a központi,  pedig a felületi nyomás. Mivel , feltehetjük, hogy  Ugyanezzel a közelítéssel élve, a ,,rétegvastagságra'' az adódik, hogy  ahol  a csillag (teljes) sugara, valamint  ahol  a csillag teljes tömege.
 A sűrűség közelíthető a középpontban felvett értékével,  Feltehetjük továbbá, hogy a nyomás az ideális gáztörvényből számolható.
 2.a. Határozd meg a csillag középpontjában a  hőmérsékletet kizárólag a csillag sugarának, tömegének, valamint fizikai állandóknak a segítségével!
 A fenti modell teszteléséhez vizsgáljuk meg a kapott eredmény egy egyszerű következményét:
 2.b. A 2.a. pontban kapott egyenlőség alapján add meg a vizsgált csillagokra az  arány becsült értékét kizárólag fizikai állandók és  függvényében!
 2.c. A  hőmérsékletnek az 1.a. pontban meghatározott értéke alapján határozd meg számszerűen a csillagok  arányának jósolt értékét!
 2.d. Most számold ki a Nap esetén az  arányt, és ellenőrizd, hogy ez az érték sokkal kisebb, mint a 2.c. pontban meghatározott érték!
 
  3. Csillagok központi hőmérsékletének kvantummechanikai becslése A 2.d. pontban talált nagy eltérés azt sejteti, hogy -nek az 1.a. pontban adott becslése nem helyes. Az ellentmondás kvantummechanikai effektusok figyelembevételével oldható fel. Eszerint a protonok hullámként viselkednek, és egyetlen proton a  de Broglie-hullámhosszával azonos nagyságrendű területen ,,van szétkenve''. Ez azt jelenti, hogy ha a protonok között elért  minimális távolság a  hullámhossz közelébe esik, akkor a két részecske kvantummechanikai értelemben ,,átfedésbe kerül'', és így képesek a fúzióra.
 3.a. Feltéve, hogy a  sebességgel haladó protonok esetén a fúzió feltétele , határozd meg  értékét csupán fizikai állandók segítségével!
 3.b. Határozd meg a  hőmérsékletre a 3.a. pontban kapott kifejezés numerikus értékét!
 3.c. A 3.b. pontban kapott érték valamint a 2.b. pontban levezetett kifejezés segítségével határozd meg az  arány becsült numerikus értékét csillagokra! Ellenőrizd, hogy ez az érték közel esik-e a megfigyelésekből származó  arányhoz!
 Valóban, az úgynevezett fősorozatba eső csillagok (melyekben hidrogén fúziója zajlik, ,,normális'' csillagok) nagyon tág tömeghatárok között megfelelnek a fenti becslésnek.
 
  4. Csillagok tömeg/sugár aránya Az előző feladatban tapasztalt egyezés azt sejteti, hogy a Nap középponti hőmérsékletének becslésére a kvantummechanikai gondolatmenet helyes.
 4.a. Az előző eredményt felhasználva mutasd meg, hogy minden olyan csillag esetén, melyben hidrogén-fúzió zajlik, az  tömeg és  sugár aránya állandó, mely kizárólag univerzális fizikai konstansoktól függ! Határozd is meg ezt az  arányt ezekre a csillagokra!
 
  5. A legkisebb csillagok tömege és sugara A 4.a. pontban kapott eredményből arra következtethetnénk, hogy bármely tömeggel létezhetnek hidrogén-fúziós ciklusban levő csillagok, feltéve, hogy az összefüggés feltétele teljesül. Ez a következtetés azonban helytelen.
 A hidrogén-fúziós ciklusban levő csillagokban található gáz ideális gázként viselkedik. Ez azt jelenti, hogy az elektronok közti  tipikus távolság átlagos értéke nagyobb, mint az elektronok  de Broglie-hullámhossza. Ellenkező esetben ugyanis az elektronok egy úgynevezett degenerált állapotban lennének, és a csillag másképp viselkedne. Felhívjuk a figyelmet arra a tényre, hogy a vizsgált csillag-típusban levő protonokat és elektronokat másként kezeljük. Protonok esetén a de Broglie-hullámok átfedése szükséges ahhoz, hogy a fúzió létrejöhessen, míg elektronok esetén a de Broglie hullámok nem fedhetnek át, mert különben az elektronokat nem kezelhetnénk ideális gázként.
 A valóságban a csillagok belsejében levő gáz sűrűsége a középpont felé haladva nő. Ennek ellenére ebben a nagyságrendi becslésben tegyük föl, hogy a vizsgált csillag sűrűsége állandó. Ezen kívül felhasználhatjuk, hogy .
 5.a. Határozd meg az  átlagos elektronszám-sűrűséget a csillag belsejében!
 5.b. Határozd meg az elektronok közti  tipikus távolságot a csillag belsejében!
 5.c. A  feltétel használatával határozd meg egyenlettel a legkisebb olyan csillag sugarát, mely hidrogén-fúziós ciklusban lehet! (Ezek az ún. normál csillagok.) Tekintsd úgy, hogy a csillag középpontjában mért hőmérséklet a csillagban bárhol mérhető hőmérséklet tipikus értéke.
 5.d. Határozd meg a lehető legkisebb normál csillag sugarának számértékét méterben is és a Nap sugarának (rádiuszának) egységében is!
 5.e. Határozd meg a lehető legkisebb normál csillag tömegének számértékét kilogrammban is, és Naptömeg-egységben is!
 
  6. Hélium-fúzió öregebb csillagokban Ahogy a csillagok öregednek, majdnem az összes magjukban lévő hidrogént héliummá (He) alakították, így a további fénykibocsátás érdekében arra kényszerülnek, hogy elkezdjék a hélium fuzionálását nehezebb elemekké. A hélium mag két protonból és két neutronból áll, így a töltése kétszerese, a tömege kb. négyszerese a protonénak. Láttuk korábban, hogy a proton fúziójának feltétele .
 6.a. Add meg a megfelelő feltételt a hélium magokra vonatkozóan, és határozd meg a hélium magok (He) négyzetes átlagsebességét, valamint a hélium fúzióhoz szükséges (He) hőmérsékletet!
 |