Feladat: 873. matematika feladat Korcsoport: 16-17 Nehézségi fok: átlagos
Füzet: 1900/november, 67. oldal  PDF file
Témakör(ök): Maradékosztályok, Oszthatósági feladatok, Diofantikus egyenletek, Feladat
Hivatkozás(ok):Feladatok megoldásai: 1901/február: 873. matematika feladat

A szöveg csak Firefox böngészőben jelenik meg helyesen. Használja a fenti PDF file-ra mutató link-et a letöltésre.

Legyenek a,b,c,d és m oly egész számok, hogy

am3+bm2+cm+d
osztható 5-tel, de d nem osztható 5-tel. Bebizonyítandó, hogy ekkor mindig található oly n egész szám, hogy
dn3+cn2+bn+a
szintén osztható 5-tel.