Cím: Preparatory problems for the entrance exam of high school
Szerző(k):  László Számadó 
Füzet: 2002/decemberi melléklet, 45. oldal  PDF file
Témakör(ök): Felvételi előkészítő feladatsor

A szöveg csak Firefox böngészőben jelenik meg helyesen. Használja a fenti PDF file-ra mutató link-et a letöltésre.

1. Solve the following equation on the set of real numbers:


2. For what positive integers a is the value of the following expression also an integer?

3. Given that the second coordinates of the points A(1,a), B(3,b), C(4,c) are
determine whether the three points are collinear.

4. What is more favourable:
I. If the bank pays 20% annual interest, and the inflation rate is 15% per year, or
II. if the bank pays 12% annual interest, and the inflation rate is 7% per year?

5. The first four terms of an arithmetic progression of integers are a1,a2,a3,a4. Show that 1a12+2a22+3a32+4a42 can be expressed as the sum of two perfect squares.

6. In an acute triangle ABC, the circle of diameter AC intersects the line of the altitude from B at the points D and E, and the circle of diameter AB intersects the line of the altitude from C at the points F and G. Show that the points D, E, F, G lie on a circle.

7. The base of a right pyramid is a triangle ABC, the lengths of the sides are AB=21cm, BC=20cm and CA=13cm. A', B', C' are points on the corresponding lateral edges, such that AA'=5cm, BB'=25cm and CC'=4cm. Find the angle of the planes of triangle A'B'C' and triangle ABC.

8. Let f(x)=2x6-3x4+x2. Prove that f(sinα)+f(cosα)=0.