| 
         
          |  |   
          | Feladat: | B.3685 | Korcsoport: 16-17 | Nehézségi fok: átlagos |   
          | Megoldó(k): | Bednay Dezső ,  Bitai Tamás ,  Bodnár József ,  Csajbók Bence ,  Csorba János ,  Czank Tamás ,  Dudás László ,  Dömötör Erika ,  Erdélyi Márton ,  Hegyháti Máté ,  Hubay Tamás ,  Jankó Zsuzsanna ,  Kirilly György ,  Kisfaludy-Bak Sándor ,  Kiss Gábor ,  Kiss Orsolya ,  Kiss-Tóth Christian ,  Korándi Dániel ,  Kunovszky Péter ,  Mészáros György ,  Nagy Csaba ,  Pálinkás Csaba ,  Poronyi Balázs ,  Rácz Miklós ,  Strenner Balázs ,  Sümegi Károly ,  Szabó Botond ,  Szabó Tamás ,  Szirtes Krisztina ,  Török Zoltán Bálint ,  Vaskó Richárd |   
          | Füzet: | 2005/április, 
            213 - 214. oldal |  PDF  |  MathML |   
          | Témakör(ök): | Szöveges feladatok, Kombinatorikai leszámolási problémák, Természetes számok, Feladat |   
  | Hivatkozás(ok): | Feladatok: 2003/december: B.3685 |   
          |  |  
  
    | A szöveg csak Firefox böngészőben jelenik meg helyesen. Használja a fenti PDF file-ra mutató link-et a letöltésre. I. megoldás. Vizsgáljuk meg, hogy egy adott pontszámot hányszor érhetünk el a játék során, hogy ezzel felkerüljünk a listára. Azt állítjuk, hogy ha , akkor  pontot legfeljebb -szer érhetünk el. Valóban, a játék folyamán egy adott pontszámnál nagyobb eredmények száma a listán nem csökken, és kezdetben  darab -esnél jobb eredmény szerepel a táblázaton. A játék programja pedig úgy működik, hogy ezek mind megelőzik a mi  pontunkat.játékot mindenképpen le kell játszanunk ahhoz, hogy már csak a mi nevünk szerepeljen a listán.Mivel 1-nél kisebb pontszámmal nem kerülhetünk a listára, míg 30-nál nagyobb pontszámból 30 játék elég, azért
 Most megmutatjuk, hogy ennyi játékra szükségünk is lehet, azaz alakulhat úgy a játékok sorozata, hogy csak a 465. játékkal foglaljuk el a teljes listát. Ha a fentiek szerint minden  értékre éppen -szer érjük el a  pontszámot, mégpedig növekvő sorrendben, majd ezek után harminc egymást követő alkalommal szerzünk 30-nál több pontot, akkor  játékot játszottunk, és csak az utolsó játékunk után tűnik el valamennyi álnév a listáról.
 Legalább 465 játékot kell játszanunk, hogy biztosra menjünk, és ennyi elég is. Ezzel a bizonyítást befejeztük.
 
  II. megoldás. Pontosan akkor kerülünk fel a listára, ha az utolsó, 30. helyezettet megelőzzük. Ebből következik, hogy ha a lista változik, akkor a pontszámok összege legalább 1-gyel nő. Kezdetben ez az összeg 465. Ha 31-pontosnak tekintjük a 30-pontos fantázianevet megelőző eredményeinket, akkor amíg szerepel fantázianév a listán, az összpontszám nőni fog. 465 sikeres játékot követően az összpontszám legalább 930-ra nő, de , azaz ekkor 30-as pontszám már nem szerepelhet a listán. Azt, hogy 465 játékra szükség lehet, az előző megoldásban látottak szerint igazolhatjuk.
 
  Megjegyzések. 1. A második megoldás gondolatmenetéből következik, hogy csak a második részben megadott játékeredmény-sorrendben lehet szükségünk 465 játékra, hiszen ha a pontszámösszeget nem 1-gyel növeljük valamelyik játék során, akkor előbb érjük el a 930-as határt. 2. A feladat statisztikája szerint kiemelkedően sok hiányos megoldás érkezett. A rengeteg 3-pontos dolgozat szerzői lényegében helyes megoldásuk első felét azzal a kijelentéssel gondolták letudni, hogy ,,elegendő a legrosszabb'' esetet vizsgálni: ,,amikor  a lehető legrosszabb eredménnyel kerülünk fel''.  Valóban ez a ,,legrosszabb'' eset, de hogy miért, arra éppen a 2. megoldás világít rá. Hiába ,,látszik szemléletesen'', ennek bizonyítása lényeges része a feladatnak.
 |  |