A szöveg csak Firefox böngészőben jelenik meg helyesen. Használja a fenti PDF file-ra mutató link-et a letöltésre. Ha a test a lap mellett nem csúszna, akkor a szalaghoz viszonyítva sebességgel mozogna. és ellentétes irányú, de egyenlő nagyságú, ezért . Jelölje a testnek a lap mentén -tól felé mutató keresett sebességét . Ha tehát figyelembe vesszük a testnek a lap melletti csúszását is, akkor a testnek a szalaghoz viszonyított sebessége a és sebességek eredője lesz.
A szalag a hozzá viszonyítva sebességgel mozgó test alsó lapjára az -gyel ellentétes irányú súrlódási erőt gyakorol. az -re merőleges és irányába eső összetevőkre bontható , . Mivel a test felé állandó sebességgel csúszik, azért a éppen akkora, mint a nyomóerő következtében a test oldallapján fellépő surlódási erő. Pythagoras tétele szerint . Most már a sebességet is meg tudjuk határozni: A és hasonló voltából . Határozzuk meg egy test letaszítása alatt a szalag húzásához szükséges erőt. A szalag által a test aljára gyakorolt erő felbontható egy irányába eső és egy arra merőleges összetevőre , . Mivel és egyenlő szárú derékszögű háromszögek:
Ezzel az egy test letaszítása közben a szalag húzásához szükséges teljesítmény: | |
Bor Edit (Szeged, Ságvári E. g. II. o. t.) |
|