Feladat: 353. matematika ábrázoló geometria feladat Korcsoport: 18- Nehézségi fok: átlagos
Megoldó(k):  Brill György ,  Farkas Imre ,  Ilkovits Iván ,  Komlós J. ,  Schwarz J. 
Füzet: 1936/március, 218 - 219. oldal  PDF  |  MathML 
Témakör(ök): Ábrázoló geometria
Hivatkozás(ok):Feladatok: 1935/december: 353. matematika ábrázoló geometria feladat

A szöveg csak Firefox böngészőben jelenik meg helyesen. Használja a fenti PDF file-ra mutató link-et a letöltésre.

I. Megoldás. X, Y, B, C pontok egy körön vannak, tehát egy síkban fekszenek. De P az X, Y egyenes egy pontja, tehát a keresett kör síkja a [PBC] sík. E sík a hasábot az A'BC háromszögben messe.

 
 

Rajzoljuk meg az A'BC pontokon átmenő kört és ennek az érintőjét A'-ben. A P-re illeszkedő és az érintővel párhuzamos egyenes g.
 

Brill György (Bólyai r. VIII. o. Budapest.)
 

II. Megoldás. ... Mivel BCXY húrnégyszög, ezért a szemközti szögek össszege 180, amiből következik, hogy
CYP=CBX.

Farkas Imre (Szt. László rg. VII. o. Budapest.)
 

III. Megoldás. ... A'B és A'B' a keresett kör két szelője, tehát: A'X¯A'C¯=AY¯A'B¯, ahonnan
A'X¯A'Y=A'B¯A'C¯,
amiből a g iránya megszerkeszthető.
 
 

[A'B'¯=A'B¯ és A'C'¯=A'C¯].
Ilkovits Iván (Kemény Zs. r. VIII. o. Budapest.)