Feladat: 567. matematika gyakorlat Korcsoport: 16-17 Nehézségi fok: átlagos
Megoldó(k):  Angyal M. ,  Ballai Gy. ,  Davida E. ,  Deutsch K. ,  Fekete K. ,  Fischer M. ,  Fulajtár G. ,  Kuffler A. ,  MIlhofer L. ,  Németh E. ,  Paunz R. ,  Rónai M. ,  Singer György Ödön ,  Spitzer L. ,  Vermes Ö. ,  Vidor A. 
Füzet: 1906/január, 141. oldal  PDF  |  MathML 
Témakör(ök): Terület, felszín, Síkgeometriai számítások trigonometria nélkül háromszögekben, Gyakorlat
Hivatkozás(ok):Feladatok: 1905/november: 567. matematika gyakorlat

A szöveg csak Firefox böngészőben jelenik meg helyesen. Használja a fenti PDF file-ra mutató link-et a letöltésre.

Ha az AB és CD oldalra E-ből merőlegest bocsátunk s így AB-n és CD-n az F és G pontot nyerjük, akkor FG az egyenközény magassága és az ABE és CBE háromszögek területeinek összege

t=AB2EF+CD2EG=AB2(EF+EG)=AB2FG=T2,
ha T az egyenközény területét jelenti. Ennélfogva az ADE és BEC háromszögek területeinek összege
t'=T-t=T2=t.

(Singer György Ödön, Budapest.)