| A szöveg csak Firefox böngészőben jelenik meg helyesen. Használja a fenti PDF file-ra mutató link-et a letöltésre. Sokféle út vezet az ,,üdvösséghez''; a fizikai problémák megoldásához is ‐ számos esetben ‐ többféle gondolatmenettel el lehet jutni. Jó példa erre a 2003. évi Eötvös-verseny 2. feladata, amely lapunk 171. oldalán olvasható megoldása mellett más módszerekkel is kezelhető. Ezen ,,alternatív'' gondolatmenetek közül ismertetünk most kettőt. Mindkettő a versenydolgozatokban bukkant fel (részben vagy teljesen kidolgozva), és a megoldások szépsége (eleganciája) miatt feltétlenül megérdemlik, hogy Olvasóink is megismerkedjenek velük.
  I. megoldás (Csóka Endre dolgozata alapján). Bebizonyítjuk, hogy a mágneses indukcióvonalak (az áramvezetők közti távolságot felező ponton áthaladó egyenestől eltekintve) körök. 
      1. ábra  Tekintsük az áramvezetőkre merőleges síkmetszetet, és használjuk az 1. ábrán látható vektor-jelöléseket! (A vektorokat a továbbiakban vastag betűvel jelöljük, az abszolút értéküket pedig a megfelelő betű vastagítás nélküli párjával; pl. .) Az egyes áramvezetők által létrehozott mágneses indukcióvektor tetszőleges helyen, így a  pontban is merőleges a vezetőtől a kérdéses pontba mutató  vektorra, és a nagysága ‐ a gerjesztési törvény értelmében ‐ a távolsággal fordítottan arányos:  továbbá  ahol  egy ‐ számunkra érdektelen ‐ állandó.
 Azt szeretnénk belátni, hogy az eredő mágneses indukció,  iránya egy alkalmasan választott kör  rádiusz-vektorára merőleges, tehát a kör érintőjével párhuzamos. Forgassuk el gondolatban  fokkal a  és  vektorokat, és velük együtt az eredő  vektort is; legyenek az elforgatott vektorok ,  és  (2. ábra).
 
      2. ábra  A  vektor ellentétes irányú az  vektorral,  pedig egyállású az  vektorral, tehát az eredőjük
 Ez a vektor akkor lesz a  pont helyzetétől, vagyis az  vektor irányától függetlenül -rel párhuzamos, ha  azaz ( és  azonos irányát is figyelembe véve) fennáll, hogy  Ez pedig nem más, mint az Apollóniosz-körök jellemzője.|  |  | 
 
  II. megoldás (Balogh László sejtése alapján). Tekintsünk először egyetlen hosszú, egyenes áramjárta vezetőt, melynek mágneses erővonalai a vezetőt körülölelő koncentrikus körök (3. ábra). Az ábrán az erővonalak sűrűségét a térerősség nagyságával arányosan választottuk meg, és szaggatott vonalakkal bejelöltünk egy ‐ az erővonalakra merőleges ‐ egyenes-sereget is. Ez utóbbiak ‐ az elektrosztatikus mező potenciálfelületeihez hasonlóan ‐ a ,,síkbeli'' magnetosztatikus mező ekvipotenciális vonalaiként is felfoghatók. 
      3. ábra  Az ábrán látható két vonalsereget figyelve feltűnhet a hasonlóság egy alkalmasan választott elektrosztatikai problémával. Egy hosszú, egyenes, egyenletesen feltöltött szál elektromos erővonalrendszere és az ekvipotenciális görbéi (a szálra merőleges síkban) éppen úgy néznek ki, mint a vizsgált mágneses mező (4. ábra), csak éppen a szerepek cserélődnek fel: a mágneses tér erővonalai az elektrosztatikus mező potenciálvonalainak, a mágneses erővonalakra merőleges ,,mágneses potenciálvonalak'' pedig az elektromos tér erővonalainak felelnek meg. (Még a mágneses erővonalak sűrűsége is éppen úgy függ az áramvezetőtől mért távolságtól, mint ahogy az elektrosztatikus problémánál a potenciálgörbék sűrűsége: mindkettő a távolság reciprokával arányos.)
 
      4. ábra  Felmerül a kérdés, hogy ez az analógia más, kissé bonyolultabb, még mindig vákuumbeli, de továbbra is síkbeli elektrosztatikus és magnetosztatikus mezők között is fennáll-e. (Síkbelinek nevezünk egy  vektormezőt, ha csak 2 komponense különbözik nullától, és ezek csak két koordinátától függnek; pl.  és . A ponttöltés elektrosztatikus tere nem síkbeli, de egy hosszú egyenes vezetőé már az.) Ha igen, akkor érdemes a mágneses erővonalak (egy vektormező irányát és nagyságát megadó görbék) helyett a megfelelő elektrosztatikus potenciált (tehát egy skalár mennyiséget) kiszámítani, és megvizsgálni, hogy milyen görbék mentén állandó ez a potenciálfüggvény.
 Az 5. ábra alapján könnyen beláthatjuk, hogy az említett kettősség valóban fennáll. Az  ábrán a -vel jelölt vonalak az (elektromos) ekvipotenciális vonalak,  pedig az elektromos tér erővonalait sorszámozza. Tekintsük a besatírozott kicsiny területet, amely  és  oldalélű téglalappal közelíthető. Az elektromos térerősség nagysága kétféle módon is kiszámítható: egyrészt az erővonalak sűrűségeként (ami jelen esetben az egységnyi hosszra jutó erővonalak száma), másrészt úgy, mint az elektrosztatikus potenciál egységnyi hosszra eső megváltozása, azaz
 
      5. ábra  A  ábrán látható mágneses tér szempontjából viszont azt írhatjuk fel, hogy  Látható, hogy a két formula ugyanazt a megszorítást rója ki  és  egységnyi hosszra eső változási ütemére, tehát ha ez a feltétel teljesül, akkor abból akár , akár pedig  meghatározható.
 Alkalmazzuk a kapottakat az eredeti problémára, a párhuzamos egyenes vezetők mágneses terére, illetve a megfelelő elektrosztatikus problémára, a párhuzamos, hosszegységenként azonos nagyságú, de ellentétes előjelű töltéssel rendelkező szálakra. Egyetlen töltött szál elektromos tere a száltól mért távolsággal fordítottan arányos:  ahol  a szál töltésével arányos állandó. Az elektrosztatikus potenciál azzal a munkával egyenlő, amelyet akkor végzünk, amikor egységnyi töltés távolságát a száltól a potenciál nullpontjának választott -nak megfelelő értékről -re változtatjuk:  A két ellentétesen feltöltött szál együttes potenciálja
 Ez a kifejezés akkor állandó, ha a szálaktól mért távolságok aránya állandó, vagyis ha rajta vagyunk valamelyik Apollóniosz-körön. Ezek a körök alkotják tehát az eredeti feladatban a mágneses mező erővonalait.|  |  | 
 A fenti gondolatmenetből látszik, hogy a különböző erősségű áramokkal átjárt vezetők mágneses erővonalai az  egyenlettel írhatók le, ahol  a vezetékekben folyó áramok erősségének aránya. (Az Eötvös-versenyen szereplő feladatban . Ha például azonos nagyságú és megegyező irányú áramok eredő mágneses terére vagyunk kiváncsiak, az erővonalak az  egyenlettel jellemzett görbék, az ún. lemniszkáták.)
 Hangsúlyoznunk kell, hogy a sztatikus elektromos és mágneses mezők közötti hasonlóság csak síkbeli problémáknál, tehát két dimenzióban áll fenn. A háromdimenziós térben az ekvipotenciális pontok felületet alkotnak, míg az erővonalak továbbra is görbék, tehát egydimenziós alakzatok, így az egyik erőtér ,,potenciál-térképe'' biztosan nem feleltethető meg a másik erőtér erővonalainak. Azt is meg kell említenünk, hogy a ,,mágneses potenciálfüggvény'' a szokásos matematikai függvényfogalomtól eltérően ,,többértékű''; ha az áramvezetőt körbejárjuk, a potenciálfüggvény értéke nem lesz ugyanannyi a végpontban, mint a kezdőpontban. (Végtelen egyenes vezetőnél pl. a mágneses potenciál az azimutszöggel arányos.) Emiatt a mágneses indukció általában nem konzervatív vektormező.
 |