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seondary shool

The Monte Carlo method

Chane has an extensive in�uene on everyday life. It is known to play an essential role in asinos, but besides

that lots of random proesses an be observed around us. (E.g., what diretion does the fall of a penil initially on its

tip take?) Nature provides plenty of random proesses as well. The gas atoms within a tank perform random motions.

The deay of nulei is another random proess.

Chane an be used in the approximate determination of the value of π. Throw grains of rie (in a random way)

on a square-shaped sheet of side a that has a irle of diameter a insribed. Make N tries (ounting only the attempts

when the grains fall within the square), and ount the number of grains in the irle (Nk). For large values of N
(N ≫ 1), the ratio Nk/N gives a good approximation for the ratio of the areas of the irle and the square, that is

Nk/N = (a/2)
2
π/a2 = π/4. Thus, the value of π an be alulated as π ≈ 4Nk/N . Needless to say, this method does

not lead to the preise value of π. However, the larger the number of tries, the more preise the result, as long as the

grains fall onto the square in a uniformly random way.

Carrying out this real-life experiment is not neessary. A simple omputer program will do the job, only a good

random number generator is needed. Nowadays there are plenty of programs that an generate uniformly distributed

random numbers on the unit interval [0, 1]. Now generate a pair of them, x and y. This pair an be assoiated with

a point in the �rst quadrant of the oordinate system (the position of the rie grain after the throw). If x2 + y2 < 1
holds for the distane, then the point is within the unit irle. Suppose that the same algorithm is performed N times,

and that the point falls within the irle Nk times. Just like in the ase of the rie grains, the value of π is again

approximated by the ratio 4Nk/N .

The table below ontains the approximate values of π and their errors, obtained by inreasing the number of tries.

(The orret value of π to 9 deimal plaes is π = 3.141 592 654.)

N π perentage error

10 3.6 14.6

102 3.16 0.6

103 3.108 1.1

104 3.127 0.5

105 3.135 0.2

106 3.141 0.02

107 3.14155 0.001

It is readily seen that for inreasing N more and more preise values are obtained for π. A few hundred thousand

attempts are su�ient for the orret determination of π to two deimal plaes. Nowadays omputers perform over

107 tries within a minute. It is well worth the e�ort.

By means of ompletely random events, approximations have been obtained for a well-de�ned quantity. The above

method an be arried further, and thus randomness an be used in the solution of extremely omplex problems. The

Monte Carlo method � named after the famous asino in Monte Carlo � is extensively used both in mathematis

and physis. Metropolis and Ulam oined the name �Monte Carlo� in their 1949 artile, mentioning that the random

numbers neessary for the method ould be taken from the results in a asino. In pratie, random numbers are

generated by omputers themselves. Already in the beginning of the 20th entury the method was used by a handful

of statistiians, however its advent ame with Neumann's, Ulam's and Fermi's attempts to obtain approximate solutions

using omputers for the omplex mathematial problems of nulear reations.

Problems an very often be solved only by approximation methods. Lukily, very preise values are rarely needed.

In suh ases more often than not the Monte Carlo method proves very e�ient. Below we will see some mathematial

and physial examples for the appliation of the method. We tried to selet problems that an be studied at the

high-shool level with today's omputers.

Mathematial Appliations
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Figure 1. The area under the graph of the funtion f(x) on the interval [a, b]

Determination of the area under a urve is a fundamental problem. The area A under the graph of funtion f(x)
over the interval [a, b] (see Fig. 1 ) an be determined by dividing [a, b] in N equal setions of length ∆x = (b− a)/N ,
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and approximating the area by the so-alled retangular sum:

A ≈

N
∑

i=1

f(xi)∆x,

where xi is the midpoint of the ith subinterval. For simpliity assume that the funtion is positive on [a, b], and let

its maximum value on this interval be denoted by M . The larger N is, the more preise will the retangular sum will

be. This method is the most well-known (and also the simplest) way to determine the area under a urve. However,

the funtion f(x) = sin2(1/x) � plotted in Fig. 2 � osillates very rapidly around the origin, so only exessively high

values of N would ensure satisfatory preision in the determination of the area. The area under the graphs of rapidly

osillating funtions an be e�iently approximated using the Monte Carlo method. Again, the method of throwing

rie grains is applied. First, a random number x is generated (programming languages usually have a built-in random

number generator that piks a random number from a uniform distribution over the unit interval [0, 1]). Then this

number is transferred into the interval [a, b] by means of the transformation x → a+ x(b − a). Next, another random
number y is generated, and transformed as y → yM , leading to a (uniformly distributed) random number y in the

interval [0,M ]. Consider the two numbers as the oordinates (x, y) of a point. This point is inside the retangle of

sides (b − a) and M (see Fig. 1 ). If, in addition, the inequality y < f(x) holds for the oordinates (x, y), then the

point (grain of rie) is below the graph of f(x).
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Figure 2. Computer-generated graphs of the funtion f(x) = sin2(1/x). Close to 0, the funtion osillates violently,

however, this is not shown in detail beause of the ��nite resolution� of the omputer program. This is a purely

numerial problem, whih is not resolved by magnifying the entre part of the graph (see plot on the right)

Repeat the above sequene of operations N
total

times, and ount how many times the point is found under the

graph. Let the number of suh events be denoted by N
in

. After a su�iently large number of attempts, N
in

/N
total

is

expeted to give a good approximation for the ratio of the area A under the graph and that of the retangle, M(b−a),
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and so

A ≈ M(b− a)
N

in

N
total

.

Employ the above Monte Carlo method to the funtion in Fig. 2. The area under the graph over the interval

[a, b] = [0, b] has been alulated, and the value of b has been varied between 0 and 1. Values obtained by Monte

Carlo alulations with di�erent numbers of attempts are shown in Fig. 3. The areas are usually alulatedusing

a well-known method of higher mathematis, integral alulus, whih an be onsidered as the exat method. To

illustrate the e�etiveness of the Monte Carlo method, these exat values have also been plotted in the �gures. For

N
total

= 100 attempts the Monte Carlo method is seen to give a poor approximation of the exat result. However, for

N
total

= 10, 000 attempts the agreement is exellent with the exat result obtained by integration.
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Figure 3. The area under the graph of f(x) = sin2(1/x), obtained by the Monte Carlo method using N
total

= 100
(graph on the left) and N

total

= 10.000 (graph on the right) attempts. The dashed line shows the exat result

In what omes next, we will need area under the graph of the �hat-like funtion�

f(x) = sin2
(

sin (x)
)
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over the interval [0, π], shown in Fig. 4. The Monte Carlo method using

N
total

= 222 = 4.194.304

attempts gives the result A ≈ 1.2194, whih agrees to three deimal plaes with the exat result A = 1.2191 obtained
by integration.

Figure 4. The �hat-like funtion�. The maximum of the funtion on the interval [0, π] is M = sin2(1) = 0.7081
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Physial Appliations

In the �rst part of the artile the basis of Monte Carlo methods have been presented, along with some simple

mathematial appliations. Physiists � among others � use this very method in a multitude of �elds. Of the many

physial appliations, we will look at two below.

Determination of the entre of mass. High-shool textbooks usually ontain the method of determining the

entre of mass. For some speial geometries losed-form formulas an be given. (For example, the entre of mass of a

semiirular sheet of uniform mass distribution is at a distane 4r/3π from the entre.) For more ompliated shapes

the position of the entre of mass is rather di�ult to alulate; in general, the answer an only be given using integral

alulus.

Consider, for example, the hat-like graph of Fig. 1 in Part I. For simpliity, we will only deal with re�etion-

symmetri plane �gures. The symmetry axis of the hat-like funtion on the interval [a, b] = [0, π] is the vertial line

x = π/2, thus the horizontal oordinate of the entre of mass is evidently π/2. An elementary alulation of the vertial

oordinate is not possible.

In the general method, the �gure is divided into several small strips of mass mi; if the division is su�iently �ne,

the vertial position of the entre of mass is given by the formula

ys =

∑

i yimi
∑

imi

.

The denominator is proportional to the area of the �gure. In the �rst part of the artile, using the Monte Carlo method,

the area of the hat-like funtion was found to be A ≈ 1.219. The numerator an also be alulated with the same

method. Generate two random numbers in the unit interval [0, 1], x and y. Transforming them aording to x → xπ
and y → My, the point with oordinates (x, y) will fall within a retangle whose sides are π and M (where M , the

maximum of the hat-like funtion is M = sin2(1) = 0.7081). Then the numerator an be alulated using the following

simple algorithm:

if (y < f(x) ) then

S = S + y

N_in = N_in + 1

endif

Applying the algorithm N
total

times, the numerator in the previous formula an be approximated by SMπ/N
total

.

Here N
in

denotes the number of the points (x, y) under the graph f(x). As we saw in the �rst part, the area A under

the graph an be approximated by the expression MπN
in

/N
total

. Thus, the vertial oordinate of the entre of mass

an be alulated from the formula

ys =
S

N
in

.

The variables S and N
in

should be reset to zero at the beginning of eah yle. The program part above may, of ourse,

need to be rewritten to omply with the rules of the hosen programming language. It is worth noting that the area

under the graph is not a neessary input for the Monte Carlo alulation of the entre of mass.

Using integral alulus, the value ys = 0.274 975 is obtained, whih an be onsidered exat. Fig. 5 shows the value

of the entre of mass oordinate obtained with di�erent numbers of attempts, as well as the exat value (dashed line).

It is readily seen that for N
total

= 106 attempts the simulated value is in exellent agreement with the exat one (the

relative di�erene is 0.02%).

Figure 5. The entre of mass of the hat-like funtion, alulated by the Monte Carlo method. The dashed line shows

the exat value
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The Ising model. Certain materials exhibit magnetism. Loadstone (or magnesia stone) found around Magnesia,

whih attrats iron, was already known to the anient Greeks. However, it was not until the 20th entury, until the

establishment of laws of quantummehanis that the magneti behaviour of these materials was satisfatorily explained.

A model developed by Ising marked an important step in this researh. In this simpli�ed model the elementary magnets

within the material (in our present view: the atomi spins) an be in eah of two states: they an be parallel or

antiparallel to the external magneti �eld.

Imagine that the elementary magnets are plaed in the verties of a square lattie. The small magnet (spin) in the

ith vertex of the lattie is aligned either parallel or antiparallel to the external �eld H , and so its value is Si = ±1:

Si =

{

1, if ↑

−1, if ↓ .

A possible spin on�guration is shown in Fig. 6. Eah elementary magnet �feels� the instantaneous diretion of the other

magnets, that is, the spins interat. In this model only interations between nearest neighbours (or: �rst neighbours)

are taken into aount, and the e�ets of magnets separated by larger distanes are negleted. Thus, there is a spin

in eah lattie site that interats with its four nearest neighbours. The spins tend to align themselves parallel to the

external magneti �eld H . With the above interations, the total energy E of the system an be written as

E = −J
∑

〈i,j〉

SiSj −H
∑

i

Si,

where J , usually alled the oupling onstant, is a number harateristi of the strength of the interation between

adjaent spins. In the �rst term, the sum is over �rst neighbours only; 〈, 〉 is the shorthand notation for this.

Figure 6. The Ising model of spin systems. The spins are either parallel or antiparallel to the external magneti

�eld H

The magnetisation M of the system is the sum of all spin variables (or proportional to this quantity),

M =
∑

i

Si.

Imagine that the system is ooled to absolute zero, and the external �eld is swithed o�. The system is now in its

ground state (its lowest energy state, in other words: its �energetially most favourable� state). If the oupling onstant

J is positive, then all spins are aligned in the energetially favourable state (sine the produt of neighbouring spins

is +1 in this state), so the arising state is magnetially ordered. In the ground state (for J > 0) the magnetisation of

the system is maximal. This is the ferromagneti state.

As the temperature is inreased, more and more spins ��ip� into the opposite diretion, and so the magnetisation

of the system dereases. Above a ertain temperature Tc � in the absene of an external magneti �eld � on average

half are aligned upwards, and the other half downwards; the magnetisation M is thus zero. This temperature is alled

the ritial temperature or the Curie temperature, named after the Frenh physiist Pierre Curie. Even in the absene

of a magneti �eld H the ordered state is ompletely destroyed at inreasing temperatures. The magnetisation of

the system has a �nite (non-zero) value below Tc, while it vanishes for temperatures exeeding it. This phenomenon

� along with the hanges in the state of matter, similar in many respets � belongs to the lass of phase transitions.

Even with this simple model it an be understood why a magnet loses its magnetisation when thrown into �re. The

temperature dependene of magnetisation is skethed in Fig. 7.
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Figure 7. temperature dependene of the magnetisation in the Ising model, in the presene of di�erent external

magneti �elds

It is worth noting that the oupling onstant J an be negative as well; in this ase, and if the magneti �eld is zero,

the neighbouring spins are antiparallel (their produt is −1) in the ground state, and a hekerboard-like struture is

formed. Nature provides many examples of suh antiferromagneti systems.

Below, we will present an algorithm based on the Monte Carlo method that an be used to determine how the

magnetisation of the system shown in Fig. 3 depends on the temperature and the external magneti �eld. The

algorithm was �rst applied to spin systems by the Greek-Amerian mathematiian N. Metropolis half a entury ago,

and has been alled Metropolis algorithm ever sine [1℄. The spins are thought to be arranged in a square lattie,

aording to Fig. 2, and periodi boundary onditions are applied. This means that the entire square lattie is thought

to be periodially repeated inde�nitely in the diretions of its sides, or, alternatively, the lattie is drawn onto a torus

(the surfae of a doughnut). This trik ensures that the spins originally at the edge of the square have four nearest

neighbours, and so they are no longer di�erent from those inside the lattie.

Consider some initial spin on�guration � for example the ordered ground state orresponding to zero temperature.

Then, the following steps are repeated:

1 A spin is hosen randomly. The hange in the energy of the system due to �ipping over this spin is alulated;

this quantity will be denoted by ∆E.

2 The probability that the hosen spin �ips over at temperature T is alulated. This probability (the so-alled

transition probability) an be alulated as

W =

{

1, if ∆E < 0

e
∆E
kT , if ∆E > 0,

where k is the Boltzmann onstant.

3 A random number r is generated on the interval [0, 1]. If r < W , then the spin in question is �ipped, otherwise

it is left unaltered.

4 Bak to step 1.

It an be shown that after su�iently many yles of the above algorithm the magnetisation settles at an equilibrium

value 〈M〉 that is determined by the temperature T and the external magneti �eld H . A ertain number of iterations

(time) is always neessary to reah the equilibrium state. This time, denoted by T
rel

, is alled the relaxation time,

and is usually ounted in Monte Carlo steps (MCS). One MCS is the time neessary to hose eah spin one for the

iteration step on the average. Fig. 8 shows the typial dependene of magnetisation on time (the number of yles).

Figure 8. The time dependene of the magnetisation during the iterations, in MCS units
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The relaxation time an be determined empirially. If the magnetisation M does not hange signi�antly and

just �utuates slightly, then the equilibrium state has been reahed. Then the average magnetisation 〈M〉 an be

determined by alulating the magnetisation with a ertain frequeny, and taking the average of the results. If the

temperature is varied and the behaviour of the magnetisation is studied, then the �measurements� an provide data

for the temperature dependene of the magnetisation.

The behaviour of the in�nite, two-dimensional Ising model with zero external magneti �eld was �rst alulated

analytially (i.e. without approximations, in losed form) by L. Onsager [2℄. The ritial temperature of this system

is kTc = 2.27J . In the light of the exat solution, the preision of the Monte Carlo method an be studied. To date,

no analytial method has been found in three dimensions (i.e. for spatial latties), however, suh systems have also

been studied extensively using the Monte Carlo method.

When applying the Monte Carlo method, attention should be paid to the possible soures of error. For example,

beause of the �nite size of the system, the ritial temperature for planar latties does not agree with the known

theoretial value. In this ase the dependene of the ritial temperature on the lattie size must be examined, with

the aim of extrapolating to the in�nite system.

Another frequent problem is having a �good� random number generator. Sometimes the suessive numbers of the

generator are not ompletely independent of eah other; this inevitably leads to inorret results. Testing the random

number generator is therefore essential.

Some problems that are easy to program an be found in referene [3℄.
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