
To József Balog, my tea
her at Károly Zipernowsky

se
ondary s
hool

The Monte Carlo method

Chan
e has an extensive in�uen
e on everyday life. It is known to play an essential role in 
asinos, but besides

that lots of random pro
esses 
an be observed around us. (E.g., what dire
tion does the fall of a pen
il initially on its

tip take?) Nature provides plenty of random pro
esses as well. The gas atoms within a tank perform random motions.

The de
ay of nu
lei is another random pro
ess.

Chan
e 
an be used in the approximate determination of the value of π. Throw grains of ri
e (in a random way)

on a square-shaped sheet of side a that has a 
ir
le of diameter a ins
ribed. Make N tries (
ounting only the attempts

when the grains fall within the square), and 
ount the number of grains in the 
ir
le (Nk). For large values of N
(N ≫ 1), the ratio Nk/N gives a good approximation for the ratio of the areas of the 
ir
le and the square, that is

Nk/N = (a/2)
2
π/a2 = π/4. Thus, the value of π 
an be 
al
ulated as π ≈ 4Nk/N . Needless to say, this method does

not lead to the pre
ise value of π. However, the larger the number of tries, the more pre
ise the result, as long as the

grains fall onto the square in a uniformly random way.

Carrying out this real-life experiment is not ne
essary. A simple 
omputer program will do the job, only a good

random number generator is needed. Nowadays there are plenty of programs that 
an generate uniformly distributed

random numbers on the unit interval [0, 1]. Now generate a pair of them, x and y. This pair 
an be asso
iated with

a point in the �rst quadrant of the 
oordinate system (the position of the ri
e grain after the throw). If x2 + y2 < 1
holds for the distan
e, then the point is within the unit 
ir
le. Suppose that the same algorithm is performed N times,

and that the point falls within the 
ir
le Nk times. Just like in the 
ase of the ri
e grains, the value of π is again

approximated by the ratio 4Nk/N .

The table below 
ontains the approximate values of π and their errors, obtained by in
reasing the number of tries.

(The 
orre
t value of π to 9 de
imal pla
es is π = 3.141 592 654.)

N π per
entage error

10 3.6 14.6

102 3.16 0.6

103 3.108 1.1

104 3.127 0.5

105 3.135 0.2

106 3.141 0.02

107 3.14155 0.001

It is readily seen that for in
reasing N more and more pre
ise values are obtained for π. A few hundred thousand

attempts are su�
ient for the 
orre
t determination of π to two de
imal pla
es. Nowadays 
omputers perform over

107 tries within a minute. It is well worth the e�ort.

By means of 
ompletely random events, approximations have been obtained for a well-de�ned quantity. The above

method 
an be 
arried further, and thus randomness 
an be used in the solution of extremely 
omplex problems. The

Monte Carlo method � named after the famous 
asino in Monte Carlo � is extensively used both in mathemati
s

and physi
s. Metropolis and Ulam 
oined the name �Monte Carlo� in their 1949 arti
le, mentioning that the random

numbers ne
essary for the method 
ould be taken from the results in a 
asino. In pra
ti
e, random numbers are

generated by 
omputers themselves. Already in the beginning of the 20th 
entury the method was used by a handful

of statisti
ians, however its advent 
ame with Neumann's, Ulam's and Fermi's attempts to obtain approximate solutions

using 
omputers for the 
omplex mathemati
al problems of nu
lear rea
tions.

Problems 
an very often be solved only by approximation methods. Lu
kily, very pre
ise values are rarely needed.

In su
h 
ases more often than not the Monte Carlo method proves very e�
ient. Below we will see some mathemati
al

and physi
al examples for the appli
ation of the method. We tried to sele
t problems that 
an be studied at the

high-s
hool level with today's 
omputers.

Mathemati
al Appli
ations
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Figure 1. The area under the graph of the fun
tion f(x) on the interval [a, b]

Determination of the area under a 
urve is a fundamental problem. The area A under the graph of fun
tion f(x)
over the interval [a, b] (see Fig. 1 ) 
an be determined by dividing [a, b] in N equal se
tions of length ∆x = (b− a)/N ,
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and approximating the area by the so-
alled re
tangular sum:

A ≈

N
∑

i=1

f(xi)∆x,

where xi is the midpoint of the ith subinterval. For simpli
ity assume that the fun
tion is positive on [a, b], and let

its maximum value on this interval be denoted by M . The larger N is, the more pre
ise will the re
tangular sum will

be. This method is the most well-known (and also the simplest) way to determine the area under a 
urve. However,

the fun
tion f(x) = sin2(1/x) � plotted in Fig. 2 � os
illates very rapidly around the origin, so only ex
essively high

values of N would ensure satisfa
tory pre
ision in the determination of the area. The area under the graphs of rapidly

os
illating fun
tions 
an be e�
iently approximated using the Monte Carlo method. Again, the method of throwing

ri
e grains is applied. First, a random number x is generated (programming languages usually have a built-in random

number generator that pi
ks a random number from a uniform distribution over the unit interval [0, 1]). Then this

number is transferred into the interval [a, b] by means of the transformation x → a+ x(b − a). Next, another random
number y is generated, and transformed as y → yM , leading to a (uniformly distributed) random number y in the

interval [0,M ]. Consider the two numbers as the 
oordinates (x, y) of a point. This point is inside the re
tangle of

sides (b − a) and M (see Fig. 1 ). If, in addition, the inequality y < f(x) holds for the 
oordinates (x, y), then the

point (grain of ri
e) is below the graph of f(x).
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Figure 2. Computer-generated graphs of the fun
tion f(x) = sin2(1/x). Close to 0, the fun
tion os
illates violently,

however, this is not shown in detail be
ause of the ��nite resolution� of the 
omputer program. This is a purely

numeri
al problem, whi
h is not resolved by magnifying the 
entre part of the graph (see plot on the right)

Repeat the above sequen
e of operations N
total

times, and 
ount how many times the point is found under the

graph. Let the number of su
h events be denoted by N
in

. After a su�
iently large number of attempts, N
in

/N
total

is

expe
ted to give a good approximation for the ratio of the area A under the graph and that of the re
tangle, M(b−a),
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and so

A ≈ M(b− a)
N

in

N
total

.

Employ the above Monte Carlo method to the fun
tion in Fig. 2. The area under the graph over the interval

[a, b] = [0, b] has been 
al
ulated, and the value of b has been varied between 0 and 1. Values obtained by Monte

Carlo 
al
ulations with di�erent numbers of attempts are shown in Fig. 3. The areas are usually 
al
ulatedusing

a well-known method of higher mathemati
s, integral 
al
ulus, whi
h 
an be 
onsidered as the exa
t method. To

illustrate the e�e
tiveness of the Monte Carlo method, these exa
t values have also been plotted in the �gures. For

N
total

= 100 attempts the Monte Carlo method is seen to give a poor approximation of the exa
t result. However, for

N
total

= 10, 000 attempts the agreement is ex
ellent with the exa
t result obtained by integration.
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Figure 3. The area under the graph of f(x) = sin2(1/x), obtained by the Monte Carlo method using N
total

= 100
(graph on the left) and N

total

= 10.000 (graph on the right) attempts. The dashed line shows the exa
t result

In what 
omes next, we will need area under the graph of the �hat-like fun
tion�

f(x) = sin2
(

sin (x)
)
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over the interval [0, π], shown in Fig. 4. The Monte Carlo method using

N
total

= 222 = 4.194.304

attempts gives the result A ≈ 1.2194, whi
h agrees to three de
imal pla
es with the exa
t result A = 1.2191 obtained
by integration.

Figure 4. The �hat-like fun
tion�. The maximum of the fun
tion on the interval [0, π] is M = sin2(1) = 0.7081

7



Physi
al Appli
ations

In the �rst part of the arti
le the basi
s of Monte Carlo methods have been presented, along with some simple

mathemati
al appli
ations. Physi
ists � among others � use this very method in a multitude of �elds. Of the many

physi
al appli
ations, we will look at two below.

Determination of the 
entre of mass. High-s
hool textbooks usually 
ontain the method of determining the


entre of mass. For some spe
ial geometries 
losed-form formulas 
an be given. (For example, the 
entre of mass of a

semi
ir
ular sheet of uniform mass distribution is at a distan
e 4r/3π from the 
entre.) For more 
ompli
ated shapes

the position of the 
entre of mass is rather di�
ult to 
al
ulate; in general, the answer 
an only be given using integral


al
ulus.

Consider, for example, the hat-like graph of Fig. 1 in Part I. For simpli
ity, we will only deal with re�e
tion-

symmetri
 plane �gures. The symmetry axis of the hat-like fun
tion on the interval [a, b] = [0, π] is the verti
al line

x = π/2, thus the horizontal 
oordinate of the 
entre of mass is evidently π/2. An elementary 
al
ulation of the verti
al


oordinate is not possible.

In the general method, the �gure is divided into several small strips of mass mi; if the division is su�
iently �ne,

the verti
al position of the 
entre of mass is given by the formula

ys =

∑

i yimi
∑

imi

.

The denominator is proportional to the area of the �gure. In the �rst part of the arti
le, using the Monte Carlo method,

the area of the hat-like fun
tion was found to be A ≈ 1.219. The numerator 
an also be 
al
ulated with the same

method. Generate two random numbers in the unit interval [0, 1], x and y. Transforming them a

ording to x → xπ
and y → My, the point with 
oordinates (x, y) will fall within a re
tangle whose sides are π and M (where M , the

maximum of the hat-like fun
tion is M = sin2(1) = 0.7081). Then the numerator 
an be 
al
ulated using the following

simple algorithm:

if (y < f(x) ) then

S = S + y

N_in = N_in + 1

endif

Applying the algorithm N
total

times, the numerator in the previous formula 
an be approximated by SMπ/N
total

.

Here N
in

denotes the number of the points (x, y) under the graph f(x). As we saw in the �rst part, the area A under

the graph 
an be approximated by the expression MπN
in

/N
total

. Thus, the verti
al 
oordinate of the 
entre of mass


an be 
al
ulated from the formula

ys =
S

N
in

.

The variables S and N
in

should be reset to zero at the beginning of ea
h 
y
le. The program part above may, of 
ourse,

need to be rewritten to 
omply with the rules of the 
hosen programming language. It is worth noting that the area

under the graph is not a ne
essary input for the Monte Carlo 
al
ulation of the 
entre of mass.

Using integral 
al
ulus, the value ys = 0.274 975 is obtained, whi
h 
an be 
onsidered exa
t. Fig. 5 shows the value

of the 
entre of mass 
oordinate obtained with di�erent numbers of attempts, as well as the exa
t value (dashed line).

It is readily seen that for N
total

= 106 attempts the simulated value is in ex
ellent agreement with the exa
t one (the

relative di�eren
e is 0.02%).

Figure 5. The 
entre of mass of the hat-like fun
tion, 
al
ulated by the Monte Carlo method. The dashed line shows

the exa
t value
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The Ising model. Certain materials exhibit magnetism. Loadstone (or magnesia stone) found around Magnesia,

whi
h attra
ts iron, was already known to the an
ient Greeks. However, it was not until the 20th 
entury, until the

establishment of laws of quantumme
hani
s that the magneti
 behaviour of these materials was satisfa
torily explained.

A model developed by Ising marked an important step in this resear
h. In this simpli�ed model the elementary magnets

within the material (in our present view: the atomi
 spins) 
an be in ea
h of two states: they 
an be parallel or

antiparallel to the external magneti
 �eld.

Imagine that the elementary magnets are pla
ed in the verti
es of a square latti
e. The small magnet (spin) in the

ith vertex of the latti
e is aligned either parallel or antiparallel to the external �eld H , and so its value is Si = ±1:

Si =

{

1, if ↑

−1, if ↓ .

A possible spin 
on�guration is shown in Fig. 6. Ea
h elementary magnet �feels� the instantaneous dire
tion of the other

magnets, that is, the spins intera
t. In this model only intera
tions between nearest neighbours (or: �rst neighbours)

are taken into a

ount, and the e�e
ts of magnets separated by larger distan
es are negle
ted. Thus, there is a spin

in ea
h latti
e site that intera
ts with its four nearest neighbours. The spins tend to align themselves parallel to the

external magneti
 �eld H . With the above intera
tions, the total energy E of the system 
an be written as

E = −J
∑

〈i,j〉

SiSj −H
∑

i

Si,

where J , usually 
alled the 
oupling 
onstant, is a number 
hara
teristi
 of the strength of the intera
tion between

adja
ent spins. In the �rst term, the sum is over �rst neighbours only; 〈, 〉 is the shorthand notation for this.

Figure 6. The Ising model of spin systems. The spins are either parallel or antiparallel to the external magneti


�eld H

The magnetisation M of the system is the sum of all spin variables (or proportional to this quantity),

M =
∑

i

Si.

Imagine that the system is 
ooled to absolute zero, and the external �eld is swit
hed o�. The system is now in its

ground state (its lowest energy state, in other words: its �energeti
ally most favourable� state). If the 
oupling 
onstant

J is positive, then all spins are aligned in the energeti
ally favourable state (sin
e the produ
t of neighbouring spins

is +1 in this state), so the arising state is magneti
ally ordered. In the ground state (for J > 0) the magnetisation of

the system is maximal. This is the ferromagneti
 state.

As the temperature is in
reased, more and more spins ��ip� into the opposite dire
tion, and so the magnetisation

of the system de
reases. Above a 
ertain temperature Tc � in the absen
e of an external magneti
 �eld � on average

half are aligned upwards, and the other half downwards; the magnetisation M is thus zero. This temperature is 
alled

the 
riti
al temperature or the Curie temperature, named after the Fren
h physi
ist Pierre Curie. Even in the absen
e

of a magneti
 �eld H the ordered state is 
ompletely destroyed at in
reasing temperatures. The magnetisation of

the system has a �nite (non-zero) value below Tc, while it vanishes for temperatures ex
eeding it. This phenomenon

� along with the 
hanges in the state of matter, similar in many respe
ts � belongs to the 
lass of phase transitions.

Even with this simple model it 
an be understood why a magnet loses its magnetisation when thrown into �re. The

temperature dependen
e of magnetisation is sket
hed in Fig. 7.
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Figure 7. temperature dependen
e of the magnetisation in the Ising model, in the presen
e of di�erent external

magneti
 �elds

It is worth noting that the 
oupling 
onstant J 
an be negative as well; in this 
ase, and if the magneti
 �eld is zero,

the neighbouring spins are antiparallel (their produ
t is −1) in the ground state, and a 
he
kerboard-like stru
ture is

formed. Nature provides many examples of su
h antiferromagneti
 systems.

Below, we will present an algorithm based on the Monte Carlo method that 
an be used to determine how the

magnetisation of the system shown in Fig. 3 depends on the temperature and the external magneti
 �eld. The

algorithm was �rst applied to spin systems by the Greek-Ameri
an mathemati
ian N. Metropolis half a 
entury ago,

and has been 
alled Metropolis algorithm ever sin
e [1℄. The spins are thought to be arranged in a square latti
e,

a

ording to Fig. 2, and periodi
 boundary 
onditions are applied. This means that the entire square latti
e is thought

to be periodi
ally repeated inde�nitely in the dire
tions of its sides, or, alternatively, the latti
e is drawn onto a torus

(the surfa
e of a doughnut). This tri
k ensures that the spins originally at the edge of the square have four nearest

neighbours, and so they are no longer di�erent from those inside the latti
e.

Consider some initial spin 
on�guration � for example the ordered ground state 
orresponding to zero temperature.

Then, the following steps are repeated:

1 A spin is 
hosen randomly. The 
hange in the energy of the system due to �ipping over this spin is 
al
ulated;

this quantity will be denoted by ∆E.

2 The probability that the 
hosen spin �ips over at temperature T is 
al
ulated. This probability (the so-
alled

transition probability) 
an be 
al
ulated as

W =

{

1, if ∆E < 0

e
∆E
kT , if ∆E > 0,

where k is the Boltzmann 
onstant.

3 A random number r is generated on the interval [0, 1]. If r < W , then the spin in question is �ipped, otherwise

it is left unaltered.

4 Ba
k to step 1.

It 
an be shown that after su�
iently many 
y
les of the above algorithm the magnetisation settles at an equilibrium

value 〈M〉 that is determined by the temperature T and the external magneti
 �eld H . A 
ertain number of iterations

(time) is always ne
essary to rea
h the equilibrium state. This time, denoted by T
rel

, is 
alled the relaxation time,

and is usually 
ounted in Monte Carlo steps (MCS). One MCS is the time ne
essary to 
hose ea
h spin on
e for the

iteration step on the average. Fig. 8 shows the typi
al dependen
e of magnetisation on time (the number of 
y
les).

Figure 8. The time dependen
e of the magnetisation during the iterations, in MCS units
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The relaxation time 
an be determined empiri
ally. If the magnetisation M does not 
hange signi�
antly and

just �u
tuates slightly, then the equilibrium state has been rea
hed. Then the average magnetisation 〈M〉 
an be

determined by 
al
ulating the magnetisation with a 
ertain frequen
y, and taking the average of the results. If the

temperature is varied and the behaviour of the magnetisation is studied, then the �measurements� 
an provide data

for the temperature dependen
e of the magnetisation.

The behaviour of the in�nite, two-dimensional Ising model with zero external magneti
 �eld was �rst 
al
ulated

analyti
ally (i.e. without approximations, in 
losed form) by L. Onsager [2℄. The 
riti
al temperature of this system

is kTc = 2.27J . In the light of the exa
t solution, the pre
ision of the Monte Carlo method 
an be studied. To date,

no analyti
al method has been found in three dimensions (i.e. for spatial latti
es), however, su
h systems have also

been studied extensively using the Monte Carlo method.

When applying the Monte Carlo method, attention should be paid to the possible sour
es of error. For example,

be
ause of the �nite size of the system, the 
riti
al temperature for planar latti
es does not agree with the known

theoreti
al value. In this 
ase the dependen
e of the 
riti
al temperature on the latti
e size must be examined, with

the aim of extrapolating to the in�nite system.

Another frequent problem is having a �good� random number generator. Sometimes the su

essive numbers of the

generator are not 
ompletely independent of ea
h other; this inevitably leads to in
orre
t results. Testing the random

number generator is therefore essential.

Some problems that are easy to program 
an be found in referen
e [3℄.

I wish to thank my 
olleagues, János Kertész and Tamás Vi
sek for familiarizing me with the Monte Carlo method,

Tamás Geszti and Péter Pollner for their useful advi
e, and my students, János Koltai, Szilárd Pafka and József Sz¶
s

for their help in this work.

Referen
es and Suggested Reading

[1℄ N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys., 21 (1953),

1087.

[2℄ L. Onsager, Phys. Rev., 65 (1944), 117.

[3℄ J. Kertész, J. Cserti and J. Szép: Monte Carlo simulation programs for mi
ro
omputer, Eur. J. Phys., 6 (1985),

232.

11


