In problem I. 59. of the informatics section of our 2003 October issue, the task was to draw all possible n-pointed
regular star polygons. These are obtained by connecting every k-th vertex of a regular n-gon (n > 5), starting at one
vertex (Figure 1). Ouly those solutions are accepted that do produce an n-pointed star.
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Figure 1

Definition [1]. A regular star polygon consists of a finite number of line segments in the plane where each endpoint
is incident to two line segments and there exists an isometry that maps one line segment onto any other one while
mapping the polygon into itself. The boundary of a regular polygon is also a figure of this kind but that is not called
a regular star polygon. Diagonals of a regular polygon equidistant (with a non-zero distance) from the centre form a
regular star polygon.

Consider the regular star obtained by applying the second part of the definition to a regular pentagon (Figure 2a).

Figure 2a

For this star pentagon it is true that there is an isometry for any pair of its edges: they can be mapped onto each
other by either a rotation or reflection in a line (Figure 2b). The name pentagon is slightly misleading: the stars of

Figures 2 clearly have ten sides.

Figure 2b

What further properties do these figures have? The regular star n-gon has 2n sides, the sides being equal due to
the symmetries; all other angles (out of its 2n angles) are equal, let the common measure be «, and the remaining n
angles (let them be ) are also equal. It is straightforward from the sum of the angles of a polygon that

360°
o+ B =360° — .
n

Let Ap be the initial vertex of the appropriate regular polygon, let A; denote the k-th vertex and let By be the vertex
k

next to Ap (in a clockwise direction). In the triangle AgA;0 (Figure 3a), v = — - 360° (since we are dealing with
n

k-neighbouring vertices of a regular n-gon), thus

2k
(1) a=180°—~ = (1— W) - 180°.
In the triangle Ay B,0
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, that is, a + 8 = 360° —

Hence % + 5 = 180° — , a sum independent of k. The value of 5 can also be

n
calculated from (1) and (2):

360°
B=180° + (k — 1) —.




A() AO
@» @
7 2
B,
p
o 2
A, 360°
2n
0]

Figure 3a

Rotational symmetry implies that every other vertex of a star polygon lies on a circle. Let k1 and k2 denote these
two concentric circles (Figure 3b).
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Figure 3b

It seems that every other angle of a star polygon is concave. Is that true? If the radius of the inner circle ks is
increased (or decreased), the resulting figure will also obey the definition, i.e. it will also be a star polygon but its
sides will no longer lie on the diagonals of a regular polygon. The motion of the ,inner” vertices can be continued until
there are no more concave angles and the circle ky is not yet reached (when it is reached, a regular 2n-gon is formed).

This can be done since
360°

a+ 5 =360°— < 360° (Figure 4a).

According to the definition this should also be a star polygon but if we do not want it to be, like in the case of the
regular polygon, we can require additionally that every other angle of a star polygon should be concave. There is an
intermediate state in which § = 180° and the star polygon then reduces to a regular n-gon.

O

Figure 4a

If the inner circle ks is rotated about the centre, rotational symmetry is preserved but the axial symmetry mapping
adjacent sides onto each other is destroyed. Thus the resulting ,circular saw” is not a regular star pentagon (Figure 4b).

Figure 4b

Let us consider now the solutions of the informatics problem obtained by connecting the vertices of a regular n-gon
to their k-th neighbours. That results in a closed polygon whose sides may intersect [1]. (There are solutions to the

problem.)
Ifk > ? then the same diagram can be obtained by connecting each vertex to its (n — k)-th neighbour. For n even,

n
k = — will not provide a solution either; the result is a single line segment, a diameter of the circumscribed circle.

n
Thus we can assume that 2 < k < 5



Let us first consider the case of n = 11 (that was the example discussed in the informatics problem). 2 < k < 5.5
allows: k = 2,3,4,5. If £ = 2, the vertices in the order of connection are

0, 2, 4, 6, 8 10, 1, 3, 5 7, 9, 0.

(In the 6th step, it would not make sense to write 12 since the 12th vertex coincides with the first one.) We know 11
is prime, so the polygon closes up in the 11th step. The possible cases are shown in Figure 5.

Figure 5

n
A similar result is obtained for any prime number n. Then the possible values of k are k = 2,3, ..., [5} (where
n
[x] stands for the greatest integer not greater than x). Since n is odd, B is not a whole number, so the number of

solutions is [E} —1.
If n =10 then 2 < k < 5 allows k = 2,3,4, as shown in Figure 6. In the case of k£ = 2 the polygon returns to the
starting point in the 5th step without the line segments intersecting each other. A regular pentagon is obtained. We

n
can observe in general that if k divides n then a regular 7 "8on is obtained, which is not accepted as a solution.

Figure 6

In the case of k = 4 we get a regular five-pointed star which could be a solution but it follows from the wording
of the problem that it does not belong here: For n = 10 we shouldnget ten-pointed stars. In general, if £ and n have
(n, k)
stands for the greatest common divisor of n and k), which is not accepted as a solution.

In the case of k = 3 we do get a ten-pointed star. In general, if k£ and n are relative primes (k > 2) then all vertices
can be traversed without returning to the starting point before the n-th step. The sides of the polygon will intersect
each other, and we get an n-pointed star.

Eventually, we only obtained one ,,good” solution for n = 10 although if the informatics problem were defined as
the connecting of diagonals equidistant from the centre, we would have three of them (Figure 7.)

common factors, that is, if they are not relative primes, then an -pointed regular star is obtained (where (n, k)

Figure 7

Does the problem always have a solution if n is not a prime? For n = 6, k can only be 2, which results in a regular
triangle, not a solution.

If n is least 3 there is a smaller number that is relatively prime to it, for example n — 1. However, we are only using
values of k that are smaller than one half of n. For n = 6 there is no solution since the only number less than 3, one
half of 6, that is relatively prime to 6 is 1. Are there any other numbers like that? We will show that there are not.



The next composite number is n = 8. A relative prime less than its half is 3. For n = 9, 2 is a solution (but so
is 4), for n = 10, 3 is a solution. Consider now the following product:

Spi=p1-pP2----Pry

where p; is the i-th prime number. s3 = 2-3 -5 = 30, which is clearly greater than 5 (its largest factor), thus for all
5 < n < 30 there exists k € {2, 3,5} such that (k,n) = 1. Otherwise all the first three primes would appear among the
prime factors of n which would mean n > 30. The generalization is obtained similarly: If n is smaller than the product
of the first r primes then some element of the set {p1,p2,...,p-} is relatively prime to n. Thus if p, < n < s, then
there exists k < p such that (k,n) = 1. In the interval [5,30] we have already checked the numbers less than 11. For

n
larger numbers it follows from the above that there is a number less than 5 that is relatively prime to n since every

prime element of the previous set is less than half of 11.

The lower limit of the rth interval is the r-th prime number and its upper limit which grows much faster then the
lower limit, is the product of the first » primes. Thus the length of the intervals grows very fast. (E.g. for r = 4 the
interval is [7,210] and for » = 5 it is [11,2310].) From the second step onwards, the upper limit is always multiplied

n
by a prime greater than 2, so there exists an interval for any n, containing both 3 and n. Thus there will always be a

n
prime less than 5 in the set of primes corresponding to the interval that is relatively prime to n. Hence the informatics

p(n) —2

problem has at least one solution for every n > 6. The number of solutions in general is —= where ©(n) denotes

the number of relative primes to n that are not greater than n. (To see this, observe that & and n are relative primes
precisely when n — k and n are. On the other hand, if £ = 1 or n — 1 then no solution is obtained.) The estimations
above imply that ¢(n) > 2 if n > 6.

This result certainly does not mean that a six-pointed star does not exist since we know that well (Figure 8). It
is indeed formed by diagonals of a regular hexagon equidistant from the centre. In addition, it is the only polygon of
that kind. If we want to get all possible star polygons, the informatics problem should be modified. If the polygon
returns to the starting point, a new one should be started from the second vertex, then another one from the third
vertex and so on as long as there are ,free” vertices.

Figure 8

Complicated as the above considerations may seem, a simple program can be written for finding all the numbers
that are relatively prime to a given number and are smaller than its half. Then we can obtain our ,,good” stars.
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