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One of the problems given at the �nal of the National A
ademi
 Competition of Se
ondary S
hool Students (OKTV)

2002�2003 was to prove the following statement (slightly rephrased):

If any three-element subset of a 2003-element planar point set is axially symmetri
, then all the points in the set are


ollinear.

To solve the problem did not prove to be di�
ult, and an abundan
e of 
orre
t solutions was re
eived. It was 
lear

from the solution of several 
ompetitors, that the proposition holds for point sets 
onsisting of mu
h fewer points than

2003. Moreover, someone also made a remark that the point set 
onsisting of the verti
es and the 
entre of a regular

pentagon shows that the statement is not true for six-element point sets, and formed a 
onje
ture that it is true for

point sets of more than six elements.

We are going to prove this proposition by 
onsidering the potential point sets and �nally mention some possible

ways to generalize these.

3-symmetri
 sets

A subset of the plane is 
alled 3-symmetri
, if any three-element subset of it is axially symmetri
. These are

des
ribed by the following theorem:

Theorem. A subset of the plane is 3-symmetri
 if and only if it is a subset of any one of the following 3-symmetri


point sets:

(a) a straight line;

(b) the verti
es of an isos
eles triangle and the 
entre of its 
ir
ums
ribed 
ir
le;

(c) the four verti
es of a rhombus;

(d) the four verti
es and the 
entre of a square;

(e) the �ve verti
es and the 
entre of a regular pentagon;

(f) four verti
es of a regular pentagon and the interse
tion point of the diagonals of the re
eived trapezium;

(g) four verti
es of a regular pentagon and the interse
tion point of the extensions of the non-parallel sides of the

re
eived trapezium;

(h) set P derived the following way: Let AECUV be a regular pentagon, D be the interse
tion of diagonals AC
and EV , B be the interse
tion of diagonals AC and EU , and E′

be the re�e
tion of E about AC. Then P =
{A,B,C,D,E,E′};

Figure (h)

(k) set P derived the following way: let AEXY CUV be a regular heptagon, B be the interse
tion of diagonals AC
and EU , and E′

be the re�e
tion of E about AC; then P = {A,B,C,E,E′}.
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Figure (k)

Figures (h) and (k) des
ribe their 
orresponding 
on�gurations. However, it is worth mentioning that ABCEU in

the �rst �gure is 
on�guration (f), whereas ABCE′U and ABCEG is 
on�guration (g), where G is the re�e
tion of

U about AC. This latter statement holds due to the fa
t that E′BCU and EBCG are both four verti
es of a regular

pentagon.

The theorem is proved through a series of propositions. Let P be a given 3-symmetri
 set, whi
h is assumed to be

non-
ollinear. Sin
e all subsets of P are 3-symmetri
 and all 
on�gurations ex
ept (a) in the theorem above have at

most 6 elements, it 
an be assumed (and it is indeed assumed until the end of the proof), that P is �nite.

Proposition 1. If A,B,C ∈ P, and angle BAC is at least a right angle, but is not a straight angle, then AB = AC.

Proof. Triangle ABC is axially symmetri
 and therefore it is isos
eles, so there are a
ute angles opposite the equal

sides. �

First, we are going to examine the 
ase in whi
h P 
ontains three 
ollinear points. It is advisable to follow the

steps of the proof in the �gures above, notations having been kept.

Proposition 2. Let us suppose that points A,B,C ∈ P lie along a straight line e in this order, and E ∈ P is

an external point. Let a = AB, c = CB. Then, (after swapping A and C if ne
essary) one of the following four

possibilities holds:

(1) a = c = EB and EA = EC. In this 
ase A, E, C are three verti
es of a square and B is its 
entre;

(2) EB = c, EA = EC = a. In this 
ase the values of angles EAC and ECA are

π

5
, while the value of angle AEC

is

3π

5
;

(3) EA = EB = c and EC = a + c. In this 
ase ABE and ACE are two similar isos
eles triangles with angles

between their equal sides of

π

5
;

(4) EA = a, EB = c and EC = a+ c. In this 
ase angles ACE and BEC are

π

7
, angles ABE and AEB are

2π

7
,

while angle CAE is

3π

7
.

The type of the 
on�guration is determined by both angle AEB and ratio

a

c
.

We note that 
on�guration ABCE des
ribed in (2) and (4) 
an be found (with the same notation) in �gure (h)
and (k) respe
tively, and 
on�guration (3) 
an also be seen in �gure (h), sin
e DBCE and ABCG are both of this

type.

Proof. As the sum of angles EBA and EBC is π, it 
an be assumed (with the possible 
hange of A and C) that
the angle at B in triangle EBC is at least a right angle. By Proposition 1, EB = c and EC > c. As angle AEC is

greater than angles BEC = BCE in triangle AEC, AC > AE. This triangle is isos
eles, and therefore EA = EC or

EC = AC = c+ a.
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Let us suppose that EA = EC. Then angles CAE, ACE, BEC are equal and angle ABE is twi
e as large (sin
e

it is the external angle of triangle BCE). Thus, the side opposite to vertex A in triangle ABE is shorter than the one

opposite to vertex B. This triangle is isos
eles, and therefore either a = AB = BE = BC (whi
h yields 
ase (1)), or
a = AB = AE (then 
ase (2) is re
eived).

If not EA = EC, but EC = AC = a+ c holds, then angles CAE and CEA are going to be equal. This latter one

is greater than angle BEA and therefore c = EB > AB = a in triangle ABE. This is also an isos
eles triangle, so

either EA = EB = c (then we get 
ase (3)), or EA = AB = a (this gives 
ase (4)). The listed angles 
an easily be


al
ulated in all of the four 
ases. �

Proposition 3. Let us suppose that points A,D,B,C ∈ P lie along a straight line e in this order, and E ∈ P is

an arbitrary point outside e. Then ABCE is a 
on�guration des
ribed in se
tion (2) of the former proposition, and D
is the re�e
tion of B about the midpoint of AC (see �gure (h)). If P is not 
ollinear, then it 
an have at most four

points along a straight line.

Proof. Let F be the perpendi
ular proje
tion of E on e. A

ording to the previous proposition at most two points

along both (
losed) half-lines starting at F 
an belong to P (sin
e F is an internal point of AC in all 
on�gurations

des
ribed in the previous proposition). Therefore, F is an internal point of DB, and both DBCE and BDAE are


on�gurations of type (2), (3), or (4) des
ribed in the former proposition. Angle EBD determines the type of both


on�gurations, so the two types are identi
al (and thus they are re�e
tions of ea
h other about line EF ). Hen
e,
EB = ED, and then both 
on�gurations are of type (3). �

Corollary 4. Suppose that P is a 3-symmetri
 set that has three 
ollinear points, but is not 
ollinear itself. Then

P is a subset of one of the 
on�gurations listed in the theorem.

Proof. Let A,B,C ∈ P be points of a straight line e in this order. Let us �nd all possible points E ∈ P outside

line e.
First, we examine when it is possible to atta
h two di�erent points E on the same side of e to points A, B, C.

The four 
on�gurations in Proposition 2 are determined to the extent of similarity. Therefore, if points A, B, C are

given, then point E (on the given side of e) is uniquely determined by them. Sin
e Proposition 2 allows swapping A
and C, in prin
iple one 
an atta
h two times four points E to ABC.

However, it is not possible to atta
h a point E to all triplets ABC; only to those where the ratio
AB

BC
is appropriate.

This ratio is di�erent in ea
h of the four 
on�gurations in Proposition 2. If we are seeking a suitable point E to points

CBA, then the re
ipro
al of the above ratio has to be 
onsidered. The only possible 
oin
iden
e is when a 
on�guration
of type (2) is atta
hed to one of the triplets ABC or CBA, and a 
on�guration of type (3) is atta
hed to the other

one (on the same side of e). This way we get points E and G, whi
h 
an be seen in �gure (h); this is 
on�guration
(g), the only one where there are at least two points on the same side of e.

Next, we are going to examine what kind of points E 
an be on di�erent sides of the line at the same time.

The ratio

AB

BC
determines what type of 
on�gurations 
an be 
onstru
ted upon ABC or upon CBA. Di�erent types


an not be 
onfused this time either, ex
ept that 
on�guration 
orresponding to (3) 
an be added to 
on�guration


orresponding to (2) on the other side of the line. This is how (f) in the list of the theorem is obtained (ABCEU in

�gure (h)). Con�gurations (1) and (4) in Proposition 2 and 
on�guration in Proposition 3 
an be re�e
ted about e,
yielding 
ases (d), (k), and (h), respe
tively.

To show that no other 
on�gurations exist, we have to prove that if there exists a point in P on both sides of the

line, there 
an be at most one on ea
h side, namely that there 
an be no more points on the other side of 
on�guration

(g). As A, E, G are 
ollinear, propositions stated so far 
an be applied to these three points instead of ABC (in

fa
t we have swapped B with E, and C with G). Therefore the side of line AEG, whi
h 
ontains B and C, 
an not


ontain any more points. Sin
e the semiplane determined by the perpendi
ular line ere
ted on e at A, whi
h 
ontains

C, 
ontains all 
on�gurations re
eived so far, P 
an not have any more points on the plane, indeed. �

From now on, let P be a �nite, 3-symmetri
 set, whi
h does not have three 
ollinear points. First, we are going to


onsider the quadrilaterals.

Proposition 5. Let us suppose that A,B,C,D ∈ P are four di�erent points. Then 
on�guration ABCD is one of

the following:

(1) the verti
es of an isos
eles triangle and the 
entre of its 
ir
ums
ribed 
ir
le;

(2) the four verti
es of a rhombus;

(3) four verti
es of a regular pentagon.

If the 
onvex hull of the four points is a triangle, then the �rst 
ase arises. If it is a quadrilateral, then in 
ases (1)
and (2) ABCD is symmetri
 about the bise
tors of all its angles that are at least right angles.

3



Proof. We are going to use Proposition 1 again. If any of the four points A, B, C, D, say D is inside triangle

ABC, then the sum of the three angles at D (ADB, BDC, CDA) is 2π, and so there 
an not exist two a
ute angles

among them. But then DA = DB = DC holds, and we are in 
ase (1).

Consequently, we 
an suppose that ABCD is a 
onvex quadrilateral that does not have a vertex whi
h is at equal

distan
e from the other three. As one of the angles of the quadrilateral is at least a right angle, there must be two

equal adja
ent sides, say DA = AB = a. If the quadrilateral is not a rhombus, then e.g. BC 6= a 
an be assumed, and

sin
e three equal sides 
an not start from A, AC 6= a. However, triangle ABC is isos
eles, and thus AC = BC = b 6= a.
As three equal sides 
an not start from C either, CD 6= b. One of the sides in triangle ACD is a, the other one is

b 6= a, the third one is not b, so it 
an only be a, namely CD = a. Therefore, in triangle DBC side BD is also either

a or b, but it 
an not be a, be
ause no three equal segments 
an start from D, either. So DB = b. Cal
ulating the

angles we re
eive a regular pentagon.

Finally, the last proposition for a rhombus is evident. If the 
on�guration 
onsists of the isos
eles triangle ABC
and the 
entre O of its 
ir
ums
ribed 
ir
le, where AB = BC, then be
ause of 
onvexity angle ABC must be obtuse,

while from OA = OB = OC it follows that there are a
ute angles at A and C. The angle at O is not ne
essarily a
ute;

but this is not a problem, as the quadrilateral is symmetri
 about OB. �

Proposition 6. Set P is either in a 
onvex position, or all but one of its points are seated along a 
ir
le, and the

ex
eptional point is the 
entre of the 
ir
le.

Proof. Let us suppose that point O ∈ P lies inside the 
onvex hull of P , and the verti
es of the 
onvex hull

are A1, . . . , An ∈ P . By indu
tion on n, we prove that O is at equal distan
e from all Ai. If n = 3, this follows

from Proposition 5. Let us suppose that the 
laim holds for all numbers less than n. It is su�
ient to prove that

OA1 = OA2. Let us suppose that this is not so. Then O 
an not be inside triangle A1A2A3 (as the proposition holds

for n = 3). Consequently, it is inside A1A3A4 . . . An, and by the indu
tion hypothesis O is at equal distan
e from

all points A1, A3, A4, . . . , An. This reasoning when repeated for the diagonal A2An instead of A1A3 yields that the

distan
e of O from A2, . . . , An is the same. But now OA1 = OAn = OA2. This 
ontradi
tion proves our statement.

�

Proposition 7. If set P has at least �ve points, then it is a subset of the 
on�guration 
onsisting of the verti
es

and the 
entre of a regular pentagon.

Proof. Let A, B, C be adja
ent verti
es of the 
onvex hull of P , so that angle ABC is at least right angle (there

exists su
h an angle, sin
e, by Proposition 6 the 
onvex hull is at least a quadrilateral). In addition to A, B, C, set
P has at least two more verti
es. On the bise
tor f of angle ABC (as on any straight line) there 
an be at most two

points belonging to P , among whi
h B is one, so there exists X ∈ P (and X 6= A,C), that is not seated along this

bise
tor. Su
h a point X 
an not be the 
entre O of the 
ir
ums
ribed 
ir
le of triangle ABC (be
ause O is on f).
Hen
e, by Proposition 6, ABCX is a 
onvex quadrilateral. As ABC is at least a right angle, and X is not on f , as a

onsequen
e of the last senten
e of Proposition 5, ABCX are the four verti
es of a regular pentagon. Thus, point X
is one of the other two verti
es D and E of the regular pentagon 
ontaining triangle ABC, (i.e. one of D and E, say
D is in P). By the previous observation, in addition to the verti
es of the pentagon, P 
an only have a point along

f (at most one besides B). Let us suppose that Y is su
h a point. We have to show that Y = O. If this is not true,
then O /∈ P , and hen
e by Proposition 6 P is 
onvex, i. e. if F denotes the interse
tion of diagonals AD and CE,
then Y 
an only be seated along the half-line starting from F and not 
ontaining B. But then ABY is not an isos
eles

triangle (sin
e ABCF is a rhombus, where BA = AF < BF be
ause of its angles, and hen
e both Y A and Y B are

greater than AB). With this we have proved both the proposition and the theorem itself. �
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Generalizations

The question of what 
an be said about those planar point sets, all of whose four-element subsets are axially

symmetri
 
omes naturally. Or, in general, one 
an ask, that for a given number k whi
h point sets will be k-symmetri
,

whi
h means that any k-element subset of them is axially symmetri
.

Next 
ome some examples of non-
ollinear, k-symmetri
 sets, that � by arbitrary k � 
an be found by anyone after

some investigation. It is plausible that the best way to �nd su
h sets is not to keep k �xed, but to �rst require the set

to remain axially symmetri
 after leaving any point o� from the set. Let these sets be 
alled one-less-symmetri
.

It 
an be easily seen that the following planar point sets are all one-less-symmetri
:

(a) all verti
es of a regular polygon;

(a′) all verti
es and the 
entre of a regular polygon;

(b) all but one verti
es of a regular polygon;

(b′) all but one verti
es and the 
entre of a regular polygon;

(c) points along two perpendi
ular straight lines that are axially symmetri
 about both lines;

(d) the union of the verti
es of some 
on
entri
 (and di�erent sized) regularm-gons and 2m-gons, so that the axes of

symmetry of the m-gons 
oin
ide (i.e. m-gons 
an have two di�erent positions), and the verti
es of the 2m-gons

are seated along the axes of symmetry of the m-gons (and so the 2m-gons 
an only have one position);

(d′) a system des
ribed in (d) united with the 
ommon 
entre of the polygons.

It 
an be noti
ed that point sets listed in (a) and (a′) are also two-less-symmetri
, i. e. leaving o� any two points,

the remaining system is axially symmetri
.

Are there any more �nite, non-
ollinear, one-less-symmetri
 point sets in the plane, other than those listed above?

It 
an be proved that a
tually there are not. We are going to leave the solution of this problem to the reader, adding

that there are no more two-less-symmetri
 sets apart from those listed above, either.

Problems:

(1) Prove that any �nite, one-less-symmetri
 subset of the plane that has at least �ve elements, is one of the examples

(a)�(d′).

(2) Prove that any �nite, two-less-symmetri
 subset of the plane that has at least six elements, is one of the examples

(a) and (a′).

Using these results, a full overview 
an be obtained on k-symmetri
 point sets of the plane for all k. For instan
e,
it easily follows that for k ≥ 4, if a k-symmetri
 point set has at least k + 3 elements, then it is 
ollinear.

Eventually, it is an interesting question that relaxing �niteness while looking for one-less- or two-less-symmetri


sets, what other examples arise. (Su
h sets are for example sets 
omprising all points of a 
ir
le or a 
ir
ular disk, or

sets 
onsisting of all points with rational 
oordinates, and a lot of other examples that 
an be 
onstru
ted similarly.)

The investigation and des
ription of these sets will also be left to the reader.
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