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One of the problems given at the �nal of the National Aademi Competition of Seondary Shool Students (OKTV)

2002�2003 was to prove the following statement (slightly rephrased):

If any three-element subset of a 2003-element planar point set is axially symmetri, then all the points in the set are

ollinear.

To solve the problem did not prove to be di�ult, and an abundane of orret solutions was reeived. It was lear

from the solution of several ompetitors, that the proposition holds for point sets onsisting of muh fewer points than

2003. Moreover, someone also made a remark that the point set onsisting of the verties and the entre of a regular

pentagon shows that the statement is not true for six-element point sets, and formed a onjeture that it is true for

point sets of more than six elements.

We are going to prove this proposition by onsidering the potential point sets and �nally mention some possible

ways to generalize these.

3-symmetri sets

A subset of the plane is alled 3-symmetri, if any three-element subset of it is axially symmetri. These are

desribed by the following theorem:

Theorem. A subset of the plane is 3-symmetri if and only if it is a subset of any one of the following 3-symmetri

point sets:

(a) a straight line;

(b) the verties of an isoseles triangle and the entre of its irumsribed irle;

(c) the four verties of a rhombus;

(d) the four verties and the entre of a square;

(e) the �ve verties and the entre of a regular pentagon;

(f) four verties of a regular pentagon and the intersetion point of the diagonals of the reeived trapezium;

(g) four verties of a regular pentagon and the intersetion point of the extensions of the non-parallel sides of the

reeived trapezium;

(h) set P derived the following way: Let AECUV be a regular pentagon, D be the intersetion of diagonals AC
and EV , B be the intersetion of diagonals AC and EU , and E′

be the re�etion of E about AC. Then P =
{A,B,C,D,E,E′};

Figure (h)

(k) set P derived the following way: let AEXY CUV be a regular heptagon, B be the intersetion of diagonals AC
and EU , and E′

be the re�etion of E about AC; then P = {A,B,C,E,E′}.
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Figure (k)

Figures (h) and (k) desribe their orresponding on�gurations. However, it is worth mentioning that ABCEU in

the �rst �gure is on�guration (f), whereas ABCE′U and ABCEG is on�guration (g), where G is the re�etion of

U about AC. This latter statement holds due to the fat that E′BCU and EBCG are both four verties of a regular

pentagon.

The theorem is proved through a series of propositions. Let P be a given 3-symmetri set, whih is assumed to be

non-ollinear. Sine all subsets of P are 3-symmetri and all on�gurations exept (a) in the theorem above have at

most 6 elements, it an be assumed (and it is indeed assumed until the end of the proof), that P is �nite.

Proposition 1. If A,B,C ∈ P, and angle BAC is at least a right angle, but is not a straight angle, then AB = AC.

Proof. Triangle ABC is axially symmetri and therefore it is isoseles, so there are aute angles opposite the equal

sides. �

First, we are going to examine the ase in whih P ontains three ollinear points. It is advisable to follow the

steps of the proof in the �gures above, notations having been kept.

Proposition 2. Let us suppose that points A,B,C ∈ P lie along a straight line e in this order, and E ∈ P is

an external point. Let a = AB, c = CB. Then, (after swapping A and C if neessary) one of the following four

possibilities holds:

(1) a = c = EB and EA = EC. In this ase A, E, C are three verties of a square and B is its entre;

(2) EB = c, EA = EC = a. In this ase the values of angles EAC and ECA are

π

5
, while the value of angle AEC

is

3π

5
;

(3) EA = EB = c and EC = a + c. In this ase ABE and ACE are two similar isoseles triangles with angles

between their equal sides of

π

5
;

(4) EA = a, EB = c and EC = a+ c. In this ase angles ACE and BEC are

π

7
, angles ABE and AEB are

2π

7
,

while angle CAE is

3π

7
.

The type of the on�guration is determined by both angle AEB and ratio

a

c
.

We note that on�guration ABCE desribed in (2) and (4) an be found (with the same notation) in �gure (h)
and (k) respetively, and on�guration (3) an also be seen in �gure (h), sine DBCE and ABCG are both of this

type.

Proof. As the sum of angles EBA and EBC is π, it an be assumed (with the possible hange of A and C) that
the angle at B in triangle EBC is at least a right angle. By Proposition 1, EB = c and EC > c. As angle AEC is

greater than angles BEC = BCE in triangle AEC, AC > AE. This triangle is isoseles, and therefore EA = EC or

EC = AC = c+ a.
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Let us suppose that EA = EC. Then angles CAE, ACE, BEC are equal and angle ABE is twie as large (sine

it is the external angle of triangle BCE). Thus, the side opposite to vertex A in triangle ABE is shorter than the one

opposite to vertex B. This triangle is isoseles, and therefore either a = AB = BE = BC (whih yields ase (1)), or
a = AB = AE (then ase (2) is reeived).

If not EA = EC, but EC = AC = a+ c holds, then angles CAE and CEA are going to be equal. This latter one

is greater than angle BEA and therefore c = EB > AB = a in triangle ABE. This is also an isoseles triangle, so

either EA = EB = c (then we get ase (3)), or EA = AB = a (this gives ase (4)). The listed angles an easily be

alulated in all of the four ases. �

Proposition 3. Let us suppose that points A,D,B,C ∈ P lie along a straight line e in this order, and E ∈ P is

an arbitrary point outside e. Then ABCE is a on�guration desribed in setion (2) of the former proposition, and D
is the re�etion of B about the midpoint of AC (see �gure (h)). If P is not ollinear, then it an have at most four

points along a straight line.

Proof. Let F be the perpendiular projetion of E on e. Aording to the previous proposition at most two points

along both (losed) half-lines starting at F an belong to P (sine F is an internal point of AC in all on�gurations

desribed in the previous proposition). Therefore, F is an internal point of DB, and both DBCE and BDAE are

on�gurations of type (2), (3), or (4) desribed in the former proposition. Angle EBD determines the type of both

on�gurations, so the two types are idential (and thus they are re�etions of eah other about line EF ). Hene,
EB = ED, and then both on�gurations are of type (3). �

Corollary 4. Suppose that P is a 3-symmetri set that has three ollinear points, but is not ollinear itself. Then

P is a subset of one of the on�gurations listed in the theorem.

Proof. Let A,B,C ∈ P be points of a straight line e in this order. Let us �nd all possible points E ∈ P outside

line e.
First, we examine when it is possible to attah two di�erent points E on the same side of e to points A, B, C.

The four on�gurations in Proposition 2 are determined to the extent of similarity. Therefore, if points A, B, C are

given, then point E (on the given side of e) is uniquely determined by them. Sine Proposition 2 allows swapping A
and C, in priniple one an attah two times four points E to ABC.

However, it is not possible to attah a point E to all triplets ABC; only to those where the ratio
AB

BC
is appropriate.

This ratio is di�erent in eah of the four on�gurations in Proposition 2. If we are seeking a suitable point E to points

CBA, then the reiproal of the above ratio has to be onsidered. The only possible oinidene is when a on�guration
of type (2) is attahed to one of the triplets ABC or CBA, and a on�guration of type (3) is attahed to the other

one (on the same side of e). This way we get points E and G, whih an be seen in �gure (h); this is on�guration
(g), the only one where there are at least two points on the same side of e.

Next, we are going to examine what kind of points E an be on di�erent sides of the line at the same time.

The ratio

AB

BC
determines what type of on�gurations an be onstruted upon ABC or upon CBA. Di�erent types

an not be onfused this time either, exept that on�guration orresponding to (3) an be added to on�guration

orresponding to (2) on the other side of the line. This is how (f) in the list of the theorem is obtained (ABCEU in

�gure (h)). Con�gurations (1) and (4) in Proposition 2 and on�guration in Proposition 3 an be re�eted about e,
yielding ases (d), (k), and (h), respetively.

To show that no other on�gurations exist, we have to prove that if there exists a point in P on both sides of the

line, there an be at most one on eah side, namely that there an be no more points on the other side of on�guration

(g). As A, E, G are ollinear, propositions stated so far an be applied to these three points instead of ABC (in

fat we have swapped B with E, and C with G). Therefore the side of line AEG, whih ontains B and C, an not

ontain any more points. Sine the semiplane determined by the perpendiular line ereted on e at A, whih ontains

C, ontains all on�gurations reeived so far, P an not have any more points on the plane, indeed. �

From now on, let P be a �nite, 3-symmetri set, whih does not have three ollinear points. First, we are going to

onsider the quadrilaterals.

Proposition 5. Let us suppose that A,B,C,D ∈ P are four di�erent points. Then on�guration ABCD is one of

the following:

(1) the verties of an isoseles triangle and the entre of its irumsribed irle;

(2) the four verties of a rhombus;

(3) four verties of a regular pentagon.

If the onvex hull of the four points is a triangle, then the �rst ase arises. If it is a quadrilateral, then in ases (1)
and (2) ABCD is symmetri about the bisetors of all its angles that are at least right angles.
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Proof. We are going to use Proposition 1 again. If any of the four points A, B, C, D, say D is inside triangle

ABC, then the sum of the three angles at D (ADB, BDC, CDA) is 2π, and so there an not exist two aute angles

among them. But then DA = DB = DC holds, and we are in ase (1).

Consequently, we an suppose that ABCD is a onvex quadrilateral that does not have a vertex whih is at equal

distane from the other three. As one of the angles of the quadrilateral is at least a right angle, there must be two

equal adjaent sides, say DA = AB = a. If the quadrilateral is not a rhombus, then e.g. BC 6= a an be assumed, and

sine three equal sides an not start from A, AC 6= a. However, triangle ABC is isoseles, and thus AC = BC = b 6= a.
As three equal sides an not start from C either, CD 6= b. One of the sides in triangle ACD is a, the other one is

b 6= a, the third one is not b, so it an only be a, namely CD = a. Therefore, in triangle DBC side BD is also either

a or b, but it an not be a, beause no three equal segments an start from D, either. So DB = b. Calulating the

angles we reeive a regular pentagon.

Finally, the last proposition for a rhombus is evident. If the on�guration onsists of the isoseles triangle ABC
and the entre O of its irumsribed irle, where AB = BC, then beause of onvexity angle ABC must be obtuse,

while from OA = OB = OC it follows that there are aute angles at A and C. The angle at O is not neessarily aute;

but this is not a problem, as the quadrilateral is symmetri about OB. �

Proposition 6. Set P is either in a onvex position, or all but one of its points are seated along a irle, and the

exeptional point is the entre of the irle.

Proof. Let us suppose that point O ∈ P lies inside the onvex hull of P , and the verties of the onvex hull

are A1, . . . , An ∈ P . By indution on n, we prove that O is at equal distane from all Ai. If n = 3, this follows

from Proposition 5. Let us suppose that the laim holds for all numbers less than n. It is su�ient to prove that

OA1 = OA2. Let us suppose that this is not so. Then O an not be inside triangle A1A2A3 (as the proposition holds

for n = 3). Consequently, it is inside A1A3A4 . . . An, and by the indution hypothesis O is at equal distane from

all points A1, A3, A4, . . . , An. This reasoning when repeated for the diagonal A2An instead of A1A3 yields that the

distane of O from A2, . . . , An is the same. But now OA1 = OAn = OA2. This ontradition proves our statement.

�

Proposition 7. If set P has at least �ve points, then it is a subset of the on�guration onsisting of the verties

and the entre of a regular pentagon.

Proof. Let A, B, C be adjaent verties of the onvex hull of P , so that angle ABC is at least right angle (there

exists suh an angle, sine, by Proposition 6 the onvex hull is at least a quadrilateral). In addition to A, B, C, set
P has at least two more verties. On the bisetor f of angle ABC (as on any straight line) there an be at most two

points belonging to P , among whih B is one, so there exists X ∈ P (and X 6= A,C), that is not seated along this

bisetor. Suh a point X an not be the entre O of the irumsribed irle of triangle ABC (beause O is on f).
Hene, by Proposition 6, ABCX is a onvex quadrilateral. As ABC is at least a right angle, and X is not on f , as a
onsequene of the last sentene of Proposition 5, ABCX are the four verties of a regular pentagon. Thus, point X
is one of the other two verties D and E of the regular pentagon ontaining triangle ABC, (i.e. one of D and E, say
D is in P). By the previous observation, in addition to the verties of the pentagon, P an only have a point along

f (at most one besides B). Let us suppose that Y is suh a point. We have to show that Y = O. If this is not true,
then O /∈ P , and hene by Proposition 6 P is onvex, i. e. if F denotes the intersetion of diagonals AD and CE,
then Y an only be seated along the half-line starting from F and not ontaining B. But then ABY is not an isoseles

triangle (sine ABCF is a rhombus, where BA = AF < BF beause of its angles, and hene both Y A and Y B are

greater than AB). With this we have proved both the proposition and the theorem itself. �
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Generalizations

The question of what an be said about those planar point sets, all of whose four-element subsets are axially

symmetri omes naturally. Or, in general, one an ask, that for a given number k whih point sets will be k-symmetri,

whih means that any k-element subset of them is axially symmetri.

Next ome some examples of non-ollinear, k-symmetri sets, that � by arbitrary k � an be found by anyone after

some investigation. It is plausible that the best way to �nd suh sets is not to keep k �xed, but to �rst require the set

to remain axially symmetri after leaving any point o� from the set. Let these sets be alled one-less-symmetri.

It an be easily seen that the following planar point sets are all one-less-symmetri:

(a) all verties of a regular polygon;

(a′) all verties and the entre of a regular polygon;

(b) all but one verties of a regular polygon;

(b′) all but one verties and the entre of a regular polygon;

(c) points along two perpendiular straight lines that are axially symmetri about both lines;

(d) the union of the verties of some onentri (and di�erent sized) regularm-gons and 2m-gons, so that the axes of

symmetry of the m-gons oinide (i.e. m-gons an have two di�erent positions), and the verties of the 2m-gons

are seated along the axes of symmetry of the m-gons (and so the 2m-gons an only have one position);

(d′) a system desribed in (d) united with the ommon entre of the polygons.

It an be notied that point sets listed in (a) and (a′) are also two-less-symmetri, i. e. leaving o� any two points,

the remaining system is axially symmetri.

Are there any more �nite, non-ollinear, one-less-symmetri point sets in the plane, other than those listed above?

It an be proved that atually there are not. We are going to leave the solution of this problem to the reader, adding

that there are no more two-less-symmetri sets apart from those listed above, either.

Problems:

(1) Prove that any �nite, one-less-symmetri subset of the plane that has at least �ve elements, is one of the examples

(a)�(d′).

(2) Prove that any �nite, two-less-symmetri subset of the plane that has at least six elements, is one of the examples

(a) and (a′).

Using these results, a full overview an be obtained on k-symmetri point sets of the plane for all k. For instane,
it easily follows that for k ≥ 4, if a k-symmetri point set has at least k + 3 elements, then it is ollinear.

Eventually, it is an interesting question that relaxing �niteness while looking for one-less- or two-less-symmetri

sets, what other examples arise. (Suh sets are for example sets omprising all points of a irle or a irular disk, or

sets onsisting of all points with rational oordinates, and a lot of other examples that an be onstruted similarly.)

The investigation and desription of these sets will also be left to the reader.
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