Bevezetés

A természeti áramlások az időjárás alakítása által rendkívüli szerepet töltenek be életünkben, minél pontosabb megértésük ezért fontos feladat a fizikusok számára is. Megismerésükhöz a kísérletezésen át vezet az út, laboratóriumi körülmények között kell őket a leginkább hű módon modelleznünk. Kifejezetten erre a célra szolgál az ELTE TTK Kármán Laboratóriuma, ahol a szökőártól kezdve a különféle légköri frontokig számtalan környezeti áramló rendszer bemutatására és tanulmányozására nyílik lehetőség.

A leendő témavezetőim által ajánlott kísérletek közül a tornádómodellt választottam, és már végzős gimnazista koromban elkezdtem a méréseket. A tornádóra emlékeztető elrendezés meglepően egyszerű, mindössze egy edény vízre és egy mágneses keverő készülékre van hozzá szükség. A működésbe hozott rendszer képe az I. ábrán látható²; a sárga színű keverő készülékben forgó erős permanens mágnes vele megegyező szögsebességű forgásra kényszeríti az edény alján elhelyezett mágneses keverőfejet. A keverés által az edény közepén létrehozott erős örvénylés legfőbb jele a víz felszínén kialakuló tölcsér. Feladatom ennek az örvényes áramlásnak a minél pontosabb felderítése volt, majd a kapott mérési eredmények összevetése a tornádók megfelelő áramlási képével.

A tölcsér méreteinek leolvasása

A lehető legegyszerűbb, mégis hatásos kísérleti módszer annak vizsgálata, hogy az örvénylés által kialakított víztölcsér méretei milyen módon függenek az edényt és a keverőfejet jellemző "bemenő" paraméterektől. A rendszer legfontosabb geometriai méreteit az 1. ábra foglalja össze; R a henger alakú edény sugarát, míg H az eredeti feltöltési magasságot jelöli. A keverőfejre vízszintes és függőleges méretein (a, d) túl jellemző még Ω szögsebessége, melyet a keverő készüléken található egyik potenciométer (ld. I. ábra) segítségével lehet szabályozni. A tölcsér Δh magassága a kiszoruló víz miatt módosult H' vízmagasságból és a tölcsér legalsó pontjának h magasságából számolható egyszerű kivonással. A víztölcsér másik fontos mérete a vízfelszín és a legalsó pont között félúton mérendő b félszélesség.

Az edény és a keverőfej méretei egyszerűen vonalzóval mérhetőek, akárcsak az eredeti és a módosult vízmagasság. A tölcsér legaljának mérésekor már két vonalzót érdemes használni a ferde leolvasásból származó hiba elkerülése végett, a félszélesség esetében pedig korrigálni kell a kapott értéket az edény optikai tulajdonságainak figyelembe vételével. Érdemes megjegyezni, hogy az utóbbi két paraméter bizonytalansága meglehetősen nagy, ez a rendszer fizikai természetéből következik. A keverőfej tengelye ugyanis nem rögzített, ezért egyensúlyi helyzete körül ugrálni képes. Ezek az apró mozgások pedig az egész áramlásban fluktuációkat keltenek, így természetes, hogy a tölcsér sem marad teljesen stacionárius; függőleges és vízszintes rezgései miatt a tölcsérmagasság hibája kb. 10%, a félszélességé pedig még nagyobb, kb. 20%.

A keverőfej szögsebességének mérésére stroboszkópot használtam; a keverőfej állni látszik (II. ábra), ha két felvillanás között éppen a félfordulat egész számú többszörösét teszi meg. A legkisebb megfelelő periódusidő kiválasztásával egyszerűen meghatározhatjuk a szögsebességet. A pontosság növelése érdekében az előbbi periódusidő felét is mindig kimértem; ekkor a keverőfej negyed fordulatot tesz meg két felvillanás között, és az edény alján egy mozdulatlan "keresztet" látunk (II. ábra). Ebből is számolható szögsebesség, a kettő átlagának hibája a tölcsér méreteiéhez képest elhanyagolható.

¹A cikk az ELTE Fizikai Intézetében Jánosi Imre, Szabó Gábor és Tél Tamás irányításával készült díjnyertes tudományos diákköri dolgozat rövid összefoglalása. ² A római számmal jelölt színes ábrák a hátsó borítón láthatók.

A tölcsér magasságának és félszélességének az egyéb paraméterektől való függését a 2. ábra mutatja; mindkét esetben a keverőfej szögsebessége került a vízszintes tengelyre. A mérések során használt különböző keverőfejekhez eltérő szimbólumok tartoznak, míg az egyre mélyülő szürke szín az aktuális edény R sugarának növekedésével jár együtt. Az egymás mellett futó "teljesen azonos" görbék a H feltöltési magasságban különböznek, jelentéktelen hatása miatt ez az eltérés jelöletlen maradt.

A 2. ábra alapján kitűnően látszik, hogy a félszélesség lényegében nem változik a keverőfej szögsebességével, a tölcsér magasságának függése viszont hatványfüggvény alakú. Duplán logaritmikus ábrázolás esetén ugyanis a mérési pontok egyenesekbe rendeződnek, közös meredekségük a velük párhuzamosan futó szaggatott vonallal összevetve 2. Megállapíthatjuk tehát, hogy a tölcsérmagasság a keverőfej szögsebességének négyzetével arányos. A mérési adatok pontosabb vizsgálata és dimenziós megfontolások alapján a következő képletekhez jutunk, melyek a rendszert jellemző többi paramétert is tartalmazzák:

$$\Delta h = \alpha \frac{\Omega^2 a^2 d^2 \sqrt{R}}{\nu (H + kR) \sqrt{g}}, \qquad b = \beta \frac{a\nu}{d\sqrt{gR}}.$$

Itt a már említett paramétereken kívül szerepelnek még a g nehézségi gyorsulás és a víz ν kinematikai viszkozitása, melynek értéke körülbelül 10^{-2} cm²/s. Az α , β és k dimenzió nélküli számfaktorokat jelölnek, ezek legmegfelelőbb értékei:

$$\alpha = (2,1 \pm 0,4) \cdot 10^{-3}, \qquad \beta = (2,8 \pm 0,8) \cdot 10^{3}, \qquad k = 6,3 \pm 1,7.$$

A képletek visszaadják a tölcsér méreteinek az Ω szögsebességtől való korábban részletezett függését, de az is látszik belőlük, hogy a keverőfej paraméterei (a, d) sokkal nagyobb hatással vannak a tölcsérre, mint az edény méretei (R, H). Az α és β számfaktorok bizonytalanságai megfelelnek a tölcsérmagasság és a félszélesség mérési hibáinak. Meglepő, hogy egy ennyire bonyolult rendszer viselkedését ilyen egyszerű képletek tudják hibahatáron belül leírni.

Sebességtér közvetlen felvétele

Az áramlástani mérések során igen gyakran használt PIV (Particle Image Velocimetry) eljárás segítségével a folyadék egy adott síkjában közvetlenül kimérhető az áramlási tér ezen síkba eső komponense. A módszer lényege, hogy két egymást nagyon kicsi, de pontosan beállított időkülönbséggel követő, síkban terjedő lézerimpulzus az áramló folyadékban szétoszlatott apró részecskéket két rövid felvillanásra kényszeríti, a lézer síkjára merőlegesen elhelyezett kamera pedig mindkét pillanatképet felveszi. Ezután egy számítógépes program a részecskék elmozdulásának és a két felvillanás között eltelt időnek ismeretében kiszámítja az adott ponthoz tartozó sebességet, pontosabban annak a lézer síkjába eső komponensét. A program az eredmények numerikus kiértékelésén túl azok megjelenítésére is alkalmas, az egyes pontokhoz rendelt sebességvektorok láthatóak a *III. ábrán.* Megfigyelhető, hogy az áramlási tér a várttal ellentétben nem teljesen hengerszimmetrikus, kicsiny másodlagos örvényeket fedezhetünk fel a kép szélén. A középen levő rózsaszín vektorok a program által interpolált értékeket jelölnek, ezeket a kiértékelés során nem vettem figyelembe. A PIV eljárást csak a rendszert jellemző méretek (R, H, a, d) egy adott konfigurációja mellett alkalmaztam; az áramlási teret négy különböző vízszintes síkban vettem fel, a keverőfej szögsebességének három különböző értékénél. Minden esetben legalább 10 mérés adatait használtam, hogy az említett kis másodlagos örvények kiátlagolódjanak. A 3. ábra bal oldalán a sebesség tangenciális, a jobb oldalán a radiális komponense látható a tengelytől való távolság függvényében, célszerűen leosztva a keverőfej Ω szögsebességével. (A tangenciális és a radiális jelzők egy síkbeli polárkoordináta-rendszer érintő-, illetve sugár irányára utalnak.) "Lefelé haladva" az ábrán egyre mélyebbre jutunk az edényben. Sajnos a tengely közelében csak interpolált értékeket találunk (III. ábra), ezért kezdődik a vízszintes tengely beosztása 8 cm-től.

3. ábra

A 3. ábrán a különböző adatsorok elég jól összeesnek, úgy tűnik, a tangenciális és a radiális sebességkomponens is egyenesen arányos a keverőfej szögsebességével. Az ábra bal oldalán levő folytonos görbék a mérési pontokra illesztett C/r alakú hiperbolák, melyek kitűnően illeszkednek az adatsorokhoz. Az áramlási tér meghatározó részét adó tangenciális komponens tehát fordítottan arányos a tengelytől mért r távolsággal és – szintén a 3. ábra alapján – lényegében független a magasságtól. A hidrodinamika tankönyvek az olyan örvényt nevezik ideálisnak, amelyben a tangenciális sebességkomponens 1/r-rel arányos, a radiális és a függőleges sebességkomponens pedig nulla. Mivel az utóbbi két kikötés esetünkben nem teljesül, csak azt állapíthatjuk meg, hogy a tengelytől elég távol (r > 8 cm) az áramlás tangenciális komponense az ideális örvényének felel meg.

A radiális komponens láthatóan jóval bonyolultabb viselkedést mutat, a magasságtól például elég erősen függ. Kvalitatív szinten annyit mondhatunk, hogy az edény felső részében befelé, alul pedig kifelé áramlik a víz. Érdekes azonban, hogy a PIV felvételek használhatóságának belső határánál (r = 8 cm) még a legalsó mért szinten is beáramlás történik.

A mérések során a sebességteret vízszintes síkokban vettem fel, emiatt a függőleges komponens "láthatatlan" marad a kamera számára. Ugyanakkor viszont ez a komponens is kiszámítható a másik kettőből, a folyadék összenyomhatatlanságát kifejező kontinuitási egyenlet és bizonyos határfeltételek figyelembe vételével. Alapvetően az a tendencia, hogy a tengely és az edény fala közt félúton lefelé, az edény fala mentén pedig igen erősen felfelé áramlik a víz. Az edény közepéről csak a PIV módszer alapján semmit nem állíthatunk, ennek felderítéséhez szükség van a következő fejezetben bemutatott nyomkövetéses eljárásokra.

Gyöngyökkel és festékkel történő nyomkövetés

Az áramló folyadékba egy kicsiny gyöngyöt vagy egy csepp festéket juttatva, majd a gyöngy mozgását, illetve a festék terjedését kamerával felvéve kvalitatív képet kaphatunk az áramlási tér szerkezetéről. Kísérleteim során milliméteres átmérőjű víznél könnyebb műanyag gyöngyöket használtam, melyek normális esetben a víz felszínén úsznak. Azonban a tölcsér közepébe ejtve őket elválnak a felszíntől, és egy többé-kevésbé stabil egyensúlyi helyzetbe kerülnek az örvény tengelyében. Ez csak akkor lehetséges, ha középen egy rendkívül erős lefelé áramlás működik, mely által a gyöngyre kifejtett közegellenállási erő éppen egyensúlyt tart a gyöngy víznél kisebb sűrűségéből eredő többlet felhajtóerővel. A leáramlás sebessége itt megegyezik azzal az állandósult emelkedési sebességgel, amit a gyöngy állóvízben érne el; méréseim szerint ez a kísérletben használt gyöngyökre 7-8 cm/s. Külön figyelmet érdemel a gyöngy mozgása az egyensúlyi helyzet körül; pályája a *IV. ábrán* látható, a bal oldali képen 10, a jobb oldalin pedig 20 másodpercig figyelve. Mivel az erős leáramlás csak egy milliméteres vastagságú fonálban koncentrálódik, a gyöngy egészen kicsi oldalirányú kitérése esetén is hirtelen lecsökken a lefelé ható közegellenállási erő. Ekkor a felhajtóerő hatására elindul felfelé, majd valahol visszatér a vékony áramlási fonálba, és újra lesüllyed. A IV. ábra alapján nyilvánvaló, hogy mozgása teljesen kaotikus, ennek ellenére stabil, hiszen soha nem hagyja el az örvény tengelyét övező centiméteres átmérőjű áramlási csövet, mely a legbelső vékony áramlási fonálból és a körülötte levő lassabb áramlású területből áll.

További értékes részleteket jelenít meg a tölcsér közepébe juttatott festékcsepp. Ellentétben az edény többi részével a festék nem oszlik szét másodpercek alatt, helyette kialakul egy élénk színű, henger alakú festékfüggöny (*V. ábra*), melynek kontúrja akár percekig is látható marad. A centiméteres átmérőjű hengerfelület éppen az előbbi áramlási csövet határolja; a függöny nagy stabilitásából arra következtethetünk, hogy itt a lefelé áramlás sebessége egészen kicsi. A gyöngyökkel történő nyomkövetés és a PIV eljárás eredményeiből ismert, hogy a felület mindkét oldalán erősebb leáramlás történik, így a függőleges sebességnek lokális minimuma van a festékfüggöny területén.

Érdemes megvizsgálni a függöny kialakulásának folyamatát is; a lefelé terjedő festék sokkal gyorsabban mozog, mint ahogy az a függöny területén tapasztalt igen gyenge leáramlásból következne. Valójában a festék jóval beljebb, a központi áramlási fonálban szállítódik, majd a nagy sebességkülönbségből fakadó kis turbulenciák következtében kiszóródik onnan. A középen maradó festéket az erős áramlás igen hamar kimossa, az áramlási cső szélére kerülő részecskékből viszont létrejöhet a stabil festékfüggöny. A kialakulás egy pillanatképe látható az V. ábra második képén; ekkor szépen kirajzolódik a festék szállításáért felelős központi áramlási fonál is.

Az áramlási kép összefoglalása

Az eddigiekben különböző, de egymást nagyon jól kiegészítő kísérleti módszereket adtam meg, melyek segítségével az edényben kialakuló tér szerkezete felderíthető. Az eredményeket a 4. ábra foglalja össze; a folytonos vonallal jelölt áramvonalak közül vastaggal van kiemelve a központi áramlási fonál, míg a festékfüggöny helyét szaggatott vonal jelzi. A forgó keverőfej nagy sebességgel dobja ki a vizet maga körül, ami egy rendkívül erős kiáramlást hoz létre az edény legalján. Később ez a víztömeg az edény falának ütközve felfelé térül el, emiatt látunk erős feláramlást a falak mentén. A tengelytől távol a radiális és a függőleges komponens egy áramlási cellával jellemezhető, melynek középvonala a központi örvény tengelyét megkerülve önmagába záródik. Messze a legkülönösebb azonban az edény tengelyében létrejövő nagy sebességű áramlási fonál; ennek milliméteres átmérője jóval kisebb a rendszer bármely más karakterisztikus méreténél.

Összehasonlítás a tornádóval

Az áramlási kép feltérképezése után ismertetem az általam vizsgált modell és a valódi tornádó közötti legfontosabb hasonlóságokat és eltéréseket. Az összehasonlítás során csak az áramlási terek szerkezetével foglalkozom; az energetikai viszonyok nyilván alapvetően különböznek.

A két rendszer legfontosabb közös tulajdonsága, hogy a sebesség tangenciális komponense az örvény magján kívül fordítottan arányos a tengelytől való távolsággal; a modell és a tornádó matematikai egyezést mutat a tangenciális sebesség szempontjából. A radiális és a függőleges komponenseket tekintve a központi erős leáramlást és a körülötte található gyenge áramlású területet említhetjük hasonlóságként. Sok más szempontból azonban ebben a két sebességkomponensben gyökeres eltéréseket vehetünk észre, például a keverőfej körül tapasztalt erős kiáramlásnak nincs megfelelője egy valódi tornádó esetében.

A tangenciális komponensek általánosabb összehasonlítása lehetséges a rendszerekre jellemző dimenzió nélküli számok vizsgálatával. Ezek azt fejezik ki, hogy a rendszer viselkedését mennyire befolyásolja egy adott hatás; minél nagyobb a szám, annál kevésbé. A tornádó és a kísérleti modell esetén a viszkozitás és a nehézségi erő szerepét jellemzi a Reynolds-szám és a Froude-szám:

$$\operatorname{Re} = \frac{uc}{\nu}, \qquad \operatorname{Fr} = \frac{u}{\sqrt{gH}}.$$

Itt a már ismert paramétereken túl szerepel a tangenciális sebesség maximális u értéke és az örvény magjának c sugara. A tornádóra és a modellre jellemző adatokat a képletekbe beírva megállapíthatjuk, hogy a Froude-számok nagyságrendileg ugyanakkorák, a Reynolds-számok pedig egységnyinél jóval nagyobbak. A nehézségi erő tehát hasonló hatást gyakorol a két rendszerre, a viszkozitás pedig az áramlás egészének szempontjából egyik esetben sem igazán fontos. Természetesen kisebb léptékben igen jelentős szerepe lehet, a tengely mentén levő kis turbulenciák kialakításában például kulcsfontosságú. A tengelytől távol viszont ennek ellenére állíthatjuk, hogy a tornádó és a modell a dimenzió nélküli számok alapján teljes dinamikai hasonlóságot mutat az áramlás domináns részét adó tangenciális komponens szempontjából.

Végül megemlíthetjük a két rendszer leglátványosabb analógiáját, a tornádó és a középen megfestett víztölcsér közötti képi hasonlóságot. A hátsó borító hátterében látható tornádótölcsér felső része főleg a felhő anyagából, míg alsó része a földről felkapott porból és törmelékből áll. Érezhető, hogy a víztölcsér és a festékfüggöny együtt felelnek meg a tornádótölcsérnek, külön-külön pedig a tornádótölcsér két részének. A képi analógia nyilvánvalóan a dinamikai hasonlóságból következik; így újabb igazolást nyert, hogy a vizsgált elrendezés hűen modellezi a valódi tornádókat.