Problems of the 1986 Kürschák József Competition

1. Prove that three semi lines starting from a given point contain three face diagonals of a cuboid if and only if the semi lines include pairwise acute angles such that their sum is 180°.
2. Let us assume that n is a positive integral number greater than two. Find the maximum value for h and the minimum value for H such that

$$
h<\frac{a_{1}}{a_{1}+a_{2}}+\frac{a_{2}}{a_{2}+a_{3}}+\ldots+\frac{a_{n}}{a_{n}+a_{1}}<H,
$$

holds for any positive numbers $a_{1}, a_{2}, \ldots, a_{n}$.
3. A and B play the following game. They arbitrarily select from among the first 100 positive integral numbers k ones. If the sum of the selected numbers is even then A wins, if their sum is odd then B is the winner. For what values of k are equal the chances for A and B ?

