
When exponential fun
tions and logarithms are presented at s
hool, 2 and 10 seem to be natural 
hoi
es for

the base. A base of 2 is useful be
ause there are several small positive integers whose base-two logarithms are also

integers. The advantage of base-ten logarithms, on the other hand, is that even logarithms of numbers of several

digits 
an be 
ompiled in a logarithmi
 table not longer than a few pages. No matter how natural the bases 2 and 10

may appear, the term �natural logarithm� does refer to a base obtained in a seemingly arti�
ial way. This �arti�
ial�

base is denoted by e, a symbol introdu
ed by the great Swiss mathemati
ian Euler, and its value is approximately

e ≈ 2.71828182845904523536.

Textbooks usually introdu
e e as the limit of the sequen
e

(

1 +
1

n

)n

. Sometimes, like Euler himself did, they

de�ne it as e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · . These de�nitions do not support algebrai
 operations dire
tly with e. In

addition, it is known from the results of Euler, Liouville and Hermite that the number e 
annot be a

essed as the

root of some polynomial of integer 
oe�
ients. In other words, e is a trans
endental number, like π. It is not easy to

perform 
al
ulations with the number e.

The study of 
omplex fun
tions revealed that the fun
tion ex is 
losely related to trigonometri
 fun
tions, and

thus e is a 
lose relative of π. They very often o

ur together in formulae, for example in Stirling's famous formula

establishing n! ≈
√
2πn

(n

e

)n

.

The number e is natural not be
ause it is easy to 
al
ulate with, but be
ause it has spe
ial properties that are

mu
h more important in mathemati
al investigations than 
onvenient arithmeti
al operations. In this paper, we will

investigate one � the most important � property of e that is responsible for all the other properties.

A little history of mathemati
s

In 15th to 16th 
entury Europe, industry, navigation, astronomy and 
ommer
e be
ame more and more important

and a

ordingly more and more professional, whi
h was partly due to te
hnologi
al progress but also to mathemati
al

a
hievements. Sin
e banking required the 
al
ulation of 
ompound interest, tables were made (by Simon Stevin, for

example). The Swiss Joost Bürgi (1552�1632), who also prepared pre
ision instruments for the market, wanted to


reate a table that is faster to use than the existing tables for 
al
ulating 
ompound interest.

For a given interest rate p, he assigned to the terms of the geometri
 progression

(

1 +
p

100

)n

, where n = 0, 1, 2, . . . ,

the 
orresponding term of the arithmeti
 progression 0, 10, 20, . . . , 10n. Thus to the produ
t of any two terms of the

original sequen
e, there is a 
orresponding term of the arithmeti
 progression that is obtained by adding the terms

assigned to the two terms multiplied. The two sequen
es were 
olour-
oded in his table (red and bla
k). In present-day

notation therefore loga

(

1 +
p

100

)n

= 10n.

Although he had 
ompleted his table by 1611, it was published only nine years later. That is why the S
ottish

mathemati
ian John Napier 
ould boast the �rst su
h table known (1614). Napier's work was based on the approximate

des
ription of the motion of someone 
overing a distan
e d whose speed at ea
h instant is equal to the remaining distan
e

to be 
overed (in appropriate units). He divided the time into short intervals of length λ, and assumed that the speed

was 
onstant within ea
h short interval. He tabulated the 
orresponding values of distan
e and time obtained in this

way. He 
oined a name for their relationship out of the Greek words logos (ratio) and arithmos (number). He used a

latinized version of his word: logarithm.

number of interval 0 1 2 . . . k . . .

distan
e remaining d (1− λ)d (1− λ)
2
d . . . (1 − λ)

k
d . . .

time elapsed 0 λ 2λ . . . kλ . . .

In his table, Napier 
hose λ = 10−7
(and d = 107). In modern terms, we 
an say that the base of the logarithm in

Napier's table was

(

1−
1

107

)107

.

It was Henry Briggs, professor of geometry at Oxford University, who improved Napier's work. One of his goals

was to set log 1 = 0, that is, to make the length of the line segment d equal to unity. He also wanted to obtain the

logarithm of 10 as a power of 10. Having 
onsidered various options, he de
ided on log 10 = 1, whi
h not only meant

the birth of de
imal logarithm but also the 
on
ept of the base of the logarithm being formulated. (Thus if a number

is the L-th power of a, then the base-a logarithm of that number is L.)

The number 2.718 . . . is known to have appeared for the �rst time in the appendix to the English translation

of Napier's book 
alled Des
riptio. (The appendix was probably written by William Oughtred.) That is where the

following statement appeared: loga 10 = 2.302585 where a ≈ 2.71828. Another interesting early a
hievement is as
ribed

to Gregory of Saint-Vin
ent, who 
al
ulated the area under the right-angled hyperbola in 1647. He 
laimed that the

area en
losed by the hyperbola of equation xy = 1 and the x axis between x = 1 and x = e was unity.
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Euler used the symbol e �rst in a manus
ript titled Meditatio en experimenta explosione tormentorum nuper

instituta in 1727�28. Later on, e appeared in a letter he wrote to Goldba
h in 1731. The number e was �rst printed

in 1736, in his paper Me
hani
a.

As to the origin of the symbol itself, we 
an all but guess. Some think it is the �rst letter of the word exponential,

others simply see in it the letter following a, b, c, d, the letter most frequently used by 
ontemporary mathemati
ians.

The nasty and jealous say that Euler, of 
ourse, named the letter e after himself.

Euler showed that the number e was irrational. In 1844, Liouville proved that it did not o

ur as a root of any

quadrati
 equation with integer 
oe�
ients, and in 1873 Hermite also proved that it was trans
endental.

With more and more powerful 
omputers available, more and more digits of e are 
al
ulated. The ra
e for the most

pre
ise value possible 
ontinues to this day. (By 1999, the number of de
imal pla
es established rea
hed an order of

magnitude of 109.)

The slope of the exponential fun
tion

The most interesting and also the most important property of the number e is related to the slope of exponential

and logarithm fun
tions.

The graphs of exponential fun
tions of various bases are familiar from s
hool. The fun
tion x 7→ ax stri
tly in
reases

if a > 1, stri
tly de
reases if 0 < a < 1 and is a 
onstant if a = 1. In ea
h 
ase, the graph is a 
ontinuous 
urve through

the point (0, 1).
The fun
tion is 
onvex for all bases, that is, the line segment 
onne
ting any two points of the graph is above the


urve (Figure 1 ).

Figure 1

Convexity 
an also be expressed formally. Let the two endpoints of the line segment be A = (x, ax) and B = (y, ay).
Any interior point C of the line segment AB divides AB in some ratio. If the ratio is q : p, where p and q are positive

numbers and p+q = 1, then the 
oordinates of C are C = (px+qy, pax+qay), whereas the pointD of the graph dire
tly

below C is D = (px+qy, apx+qy). Thus the 
onvexity of the exponential fun
tion 
an be written as apx+qy ≤ pax+qay

for all x, y, p, q (p+ q = 1, p, q ≥ 0).
The 
onvexity of the exponential fun
tion 
an be proved by means of the inequality of weighted arithmeti
 and

geometri
 means. A
tually, the expressions apx+qy
and pax+qay are respe
tively the weighted geometri
 and arithmeti


means of ax and ay, with weights p and q.

The graph of the exponential fun
tion has a tangent at every point. (We are stating that without proof now.) It is

easily seen that the slope of the tangent depends on the base. Now we will �nd out what the base should be to make

the slope of the tangent drawn at the point (0, 1) equal to 1, that is, for what base will the exponential 
urve tou
h

the line y = x+ 1. For the time being let us denote the base in question by a.

To obtain 
lose estimates for the number a, we are going to use points of the tangent 
lose to (0, 1). Let x be a

large positive real number and 
onsider the point

(

1

x
, 1 +

1

x

)

. Sin
e the 
urve is 
onvex, the whole tangent is below

the graph (ex
ept at the point of tangen
y, see Figure 2 ). Thus a
1
x > 1+

1

x
, and a >

(

1 +
1

x

)x

by raising to the x-th

power. For another estimate, 
onsider the point

(

−
1

x+ 1
, 1−

1

x+ 1

)

. This point is also below the graph, therefore

a−
1

x+1 > 1−
1

x+ 1
. This time, raising to the power of −(x+ 1) will reverse the sign sin
e the exponent is negative:

a <

(

1−
1

x+ 1

)

−(x+1)

=

(

1 +
1

x

)x+1

.
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Figure 2

Putting the two estimates together, the base in question must satisfy

(

1 +
1

x

)x

< a <

(

1 +
1

x

)x+1

for all x > 0.
This immediately raises the question: Will we get a 
loser estimate by substituting a larger number for x? We shall

prove that this is indeed the 
ase, the fun
tion x 7→
(

1 +
1

x

)x

stri
tly in
reases, whereas the fun
tion x 7→
(

1 +
1

x

)x+1

stri
tly de
reases.

Let 0 < u < v be arbitrary positive real numbers. We show �rst that

(

1 +
1

u

)u

<

(

1 +
1

v

)v

.

Let b =

(

1 +
1

u

)u

. The graph of the fun
tion x 7→ bx passes through the point U =

(

1

u
, 1 +

1

u

)

(Figure 3 ).

Figure 3

Convexity implies that the point V =

(

1

v
, 1 +

1

v

)

is above the graph of the fun
tion bx, that is, 1+
1

v
> b

1
v
. Taking

the v-th powers,

b =

(

1 +
1

u

)u

<

(

1 +
1

v

)v

.

Now let c =

(

1 +
1

u

)u+1

. The graph of the fun
tion x 7→ cx passes through the point P =

(

−
1

u+ 1
, 1−

1

u+ 1

)

.

The point Q =

(

−
1

v + 1
, 1−

1

v + 1

)

is above the graph, therefore c−
1

v+1 < 1−
1

v + 1
. If this is raised to the −(v+1)-th

power, the inequality will be reversed, c =

(

1 +
1

u

)u+1

>

(

1 +
1

v

)v+1

(Figure 4 ).

Figure 4
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The monotoni
ity of ea
h fun
tion also 
an be proved more dire
tly using the inequality of weighted geometri
 and

arithmeti
 means. For the numbers 1 +
1

u
and 1, with the weights u and v − u, respe
tively, we have

((

1 +
1

u

)u

· 1v−u

)

1
v

<
u ·
(

1 + 1
u

)

+ (v − u) · 1
v

,

(

1 +
1

u

)u

<

(

1 +
1

v

)v

.

Similarly, the inequality of harmoni
 and geometri
 means of the same numbers with the weights u+1 and v−u yields

v + 1

u+ 1

1 + 1
u

+
v − u

1

<

(

(

1 +
1

u

)u+1

· 1v−u

)
1

v+1

,

(

1 +
1

v

)v+1

<

(

1 +
1

u

)u+1

.

The ratio of the in
reasing lower estimate and de
reasing upper estimate 
learly tends to 1. Hen
e the two fun
tions

have a 
ommon limit at in�nity (Figure 5 ). If that 
ommon limit (whi
h we 
an now denote by e) is 
hosen as the

base of the exponential fun
tion, the tangent at (0, 1) will indeed en
lose an angle of 45◦ with the x-axis. This is the

property of the number e that makes it appear in so many areas of mathemati
s.

Figure 5

The slope at (0, 1) is not the only interesting thing about the fun
tion ex. The slope at any point (x, ex) is equal
to ex, or in other words (ex)

′

= ex. This is an immediate 
onsequen
e of the above property.

The purpose of this paper has been to show why the limit of the sequen
e

(

1 +
1

n

)n

is so spe
ial, why this number

is the right 
hoi
e for the base of the exponential and logarithmi
 fun
tions.

Textbooks, where 
larity and pre
ision are essential, usually present the 
ase in a di�erent order. The number e is

de�ned well before tangents and their slopes are mentioned. First it is proved in the se
tion on limits that the sequen
e

(

1 +
1

n

)n

is 
onvergent, and its limit is denoted by e. It is only later, after the introdu
tion of the 
on
epts of the

limit of a fun
tion and 
ontinuity, that the interesting property of the fun
tion ex in terms of di�erentiation be
omes

apparent.

Exer
ises

1. Let n be an arbitrary positive integer. Prove from �rst prin
iples that

(

1 +
1

n

)n

< 3.

2. Prove that

1 +
1

1!
+

1

2!
+

1

3!
+ · · · = e.

3. Prove that the fun
tion

(

1 +
a

x

)x

has a limit at in�nity for every real number a.

4. De�ne the fun
tion exp as follows: exp (a) = lim
x→∞

(

1 +
a

x

)x

. Show that exp (a + b) = exp (a) · exp (b), and in

fa
t exp (a) = ea.
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5. Prove that

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · · .

In 
ase you haven't yet heard . . .

A di�erential operator and a fun
tion meet. The operator says, �Give me your values or I'll di�erentiate you.� The

fun
tion only laughs: �I'm ex.�

There are a lot of mnemoni
s to help in memorizing the digits of e. The digits 
orrespond to the number of letters

in the words. For example:

�By omnibus I traveled to Brooklyn.�

�We present a mnemoni
 to memorize a 
onstant so ex
iting that Euler ex
laimed: `!' when first it

was found, yes, loudly `!'. My students perhaps will 
ompute e, use power or Taylor series, an easy

summation formula, obvious, 
lear, elegant!� (Barel, 1995)
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