
When exponential funtions and logarithms are presented at shool, 2 and 10 seem to be natural hoies for

the base. A base of 2 is useful beause there are several small positive integers whose base-two logarithms are also

integers. The advantage of base-ten logarithms, on the other hand, is that even logarithms of numbers of several

digits an be ompiled in a logarithmi table not longer than a few pages. No matter how natural the bases 2 and 10

may appear, the term �natural logarithm� does refer to a base obtained in a seemingly arti�ial way. This �arti�ial�

base is denoted by e, a symbol introdued by the great Swiss mathematiian Euler, and its value is approximately

e ≈ 2.71828182845904523536.

Textbooks usually introdue e as the limit of the sequene

(

1 +
1

n

)n

. Sometimes, like Euler himself did, they

de�ne it as e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · . These de�nitions do not support algebrai operations diretly with e. In

addition, it is known from the results of Euler, Liouville and Hermite that the number e annot be aessed as the

root of some polynomial of integer oe�ients. In other words, e is a transendental number, like π. It is not easy to

perform alulations with the number e.

The study of omplex funtions revealed that the funtion ex is losely related to trigonometri funtions, and

thus e is a lose relative of π. They very often our together in formulae, for example in Stirling's famous formula

establishing n! ≈
√
2πn

(n

e

)n

.

The number e is natural not beause it is easy to alulate with, but beause it has speial properties that are

muh more important in mathematial investigations than onvenient arithmetial operations. In this paper, we will

investigate one � the most important � property of e that is responsible for all the other properties.

A little history of mathematis

In 15th to 16th entury Europe, industry, navigation, astronomy and ommere beame more and more important

and aordingly more and more professional, whih was partly due to tehnologial progress but also to mathematial

ahievements. Sine banking required the alulation of ompound interest, tables were made (by Simon Stevin, for

example). The Swiss Joost Bürgi (1552�1632), who also prepared preision instruments for the market, wanted to

reate a table that is faster to use than the existing tables for alulating ompound interest.

For a given interest rate p, he assigned to the terms of the geometri progression

(

1 +
p

100

)n

, where n = 0, 1, 2, . . . ,

the orresponding term of the arithmeti progression 0, 10, 20, . . . , 10n. Thus to the produt of any two terms of the

original sequene, there is a orresponding term of the arithmeti progression that is obtained by adding the terms

assigned to the two terms multiplied. The two sequenes were olour-oded in his table (red and blak). In present-day

notation therefore loga

(

1 +
p

100

)n

= 10n.

Although he had ompleted his table by 1611, it was published only nine years later. That is why the Sottish

mathematiian John Napier ould boast the �rst suh table known (1614). Napier's work was based on the approximate

desription of the motion of someone overing a distane d whose speed at eah instant is equal to the remaining distane

to be overed (in appropriate units). He divided the time into short intervals of length λ, and assumed that the speed

was onstant within eah short interval. He tabulated the orresponding values of distane and time obtained in this

way. He oined a name for their relationship out of the Greek words logos (ratio) and arithmos (number). He used a

latinized version of his word: logarithm.

number of interval 0 1 2 . . . k . . .

distane remaining d (1− λ)d (1− λ)
2
d . . . (1 − λ)

k
d . . .

time elapsed 0 λ 2λ . . . kλ . . .

In his table, Napier hose λ = 10−7
(and d = 107). In modern terms, we an say that the base of the logarithm in

Napier's table was

(

1−
1

107

)107

.

It was Henry Briggs, professor of geometry at Oxford University, who improved Napier's work. One of his goals

was to set log 1 = 0, that is, to make the length of the line segment d equal to unity. He also wanted to obtain the

logarithm of 10 as a power of 10. Having onsidered various options, he deided on log 10 = 1, whih not only meant

the birth of deimal logarithm but also the onept of the base of the logarithm being formulated. (Thus if a number

is the L-th power of a, then the base-a logarithm of that number is L.)

The number 2.718 . . . is known to have appeared for the �rst time in the appendix to the English translation

of Napier's book alled Desriptio. (The appendix was probably written by William Oughtred.) That is where the

following statement appeared: loga 10 = 2.302585 where a ≈ 2.71828. Another interesting early ahievement is asribed

to Gregory of Saint-Vinent, who alulated the area under the right-angled hyperbola in 1647. He laimed that the

area enlosed by the hyperbola of equation xy = 1 and the x axis between x = 1 and x = e was unity.
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Euler used the symbol e �rst in a manusript titled Meditatio en experimenta explosione tormentorum nuper

instituta in 1727�28. Later on, e appeared in a letter he wrote to Goldbah in 1731. The number e was �rst printed

in 1736, in his paper Mehania.

As to the origin of the symbol itself, we an all but guess. Some think it is the �rst letter of the word exponential,

others simply see in it the letter following a, b, c, d, the letter most frequently used by ontemporary mathematiians.

The nasty and jealous say that Euler, of ourse, named the letter e after himself.

Euler showed that the number e was irrational. In 1844, Liouville proved that it did not our as a root of any

quadrati equation with integer oe�ients, and in 1873 Hermite also proved that it was transendental.

With more and more powerful omputers available, more and more digits of e are alulated. The rae for the most

preise value possible ontinues to this day. (By 1999, the number of deimal plaes established reahed an order of

magnitude of 109.)

The slope of the exponential funtion

The most interesting and also the most important property of the number e is related to the slope of exponential

and logarithm funtions.

The graphs of exponential funtions of various bases are familiar from shool. The funtion x 7→ ax stritly inreases

if a > 1, stritly dereases if 0 < a < 1 and is a onstant if a = 1. In eah ase, the graph is a ontinuous urve through

the point (0, 1).
The funtion is onvex for all bases, that is, the line segment onneting any two points of the graph is above the

urve (Figure 1 ).

Figure 1

Convexity an also be expressed formally. Let the two endpoints of the line segment be A = (x, ax) and B = (y, ay).
Any interior point C of the line segment AB divides AB in some ratio. If the ratio is q : p, where p and q are positive

numbers and p+q = 1, then the oordinates of C are C = (px+qy, pax+qay), whereas the pointD of the graph diretly

below C is D = (px+qy, apx+qy). Thus the onvexity of the exponential funtion an be written as apx+qy ≤ pax+qay

for all x, y, p, q (p+ q = 1, p, q ≥ 0).
The onvexity of the exponential funtion an be proved by means of the inequality of weighted arithmeti and

geometri means. Atually, the expressions apx+qy
and pax+qay are respetively the weighted geometri and arithmeti

means of ax and ay, with weights p and q.

The graph of the exponential funtion has a tangent at every point. (We are stating that without proof now.) It is

easily seen that the slope of the tangent depends on the base. Now we will �nd out what the base should be to make

the slope of the tangent drawn at the point (0, 1) equal to 1, that is, for what base will the exponential urve touh

the line y = x+ 1. For the time being let us denote the base in question by a.

To obtain lose estimates for the number a, we are going to use points of the tangent lose to (0, 1). Let x be a

large positive real number and onsider the point

(

1

x
, 1 +

1

x

)

. Sine the urve is onvex, the whole tangent is below

the graph (exept at the point of tangeny, see Figure 2 ). Thus a
1
x > 1+

1

x
, and a >

(

1 +
1

x

)x

by raising to the x-th

power. For another estimate, onsider the point

(

−
1

x+ 1
, 1−

1

x+ 1

)

. This point is also below the graph, therefore

a−
1

x+1 > 1−
1

x+ 1
. This time, raising to the power of −(x+ 1) will reverse the sign sine the exponent is negative:

a <

(

1−
1

x+ 1

)

−(x+1)

=

(

1 +
1

x

)x+1

.
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Figure 2

Putting the two estimates together, the base in question must satisfy

(

1 +
1

x

)x

< a <

(

1 +
1

x

)x+1

for all x > 0.
This immediately raises the question: Will we get a loser estimate by substituting a larger number for x? We shall

prove that this is indeed the ase, the funtion x 7→
(

1 +
1

x

)x

stritly inreases, whereas the funtion x 7→
(

1 +
1

x

)x+1

stritly dereases.

Let 0 < u < v be arbitrary positive real numbers. We show �rst that

(

1 +
1

u

)u

<

(

1 +
1

v

)v

.

Let b =

(

1 +
1

u

)u

. The graph of the funtion x 7→ bx passes through the point U =

(

1

u
, 1 +

1

u

)

(Figure 3 ).

Figure 3

Convexity implies that the point V =

(

1

v
, 1 +

1

v

)

is above the graph of the funtion bx, that is, 1+
1

v
> b

1
v
. Taking

the v-th powers,

b =

(

1 +
1

u

)u

<

(

1 +
1

v

)v

.

Now let c =

(

1 +
1

u

)u+1

. The graph of the funtion x 7→ cx passes through the point P =

(

−
1

u+ 1
, 1−

1

u+ 1

)

.

The point Q =

(

−
1

v + 1
, 1−

1

v + 1

)

is above the graph, therefore c−
1

v+1 < 1−
1

v + 1
. If this is raised to the −(v+1)-th

power, the inequality will be reversed, c =

(

1 +
1

u

)u+1

>

(

1 +
1

v

)v+1

(Figure 4 ).

Figure 4
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The monotoniity of eah funtion also an be proved more diretly using the inequality of weighted geometri and

arithmeti means. For the numbers 1 +
1

u
and 1, with the weights u and v − u, respetively, we have

((

1 +
1

u

)u

· 1v−u

)

1
v

<
u ·
(

1 + 1
u

)

+ (v − u) · 1
v

,

(

1 +
1

u

)u

<

(

1 +
1

v

)v

.

Similarly, the inequality of harmoni and geometri means of the same numbers with the weights u+1 and v−u yields

v + 1

u+ 1

1 + 1
u

+
v − u

1

<

(

(

1 +
1

u

)u+1

· 1v−u

)
1

v+1

,

(

1 +
1

v

)v+1

<

(

1 +
1

u

)u+1

.

The ratio of the inreasing lower estimate and dereasing upper estimate learly tends to 1. Hene the two funtions

have a ommon limit at in�nity (Figure 5 ). If that ommon limit (whih we an now denote by e) is hosen as the

base of the exponential funtion, the tangent at (0, 1) will indeed enlose an angle of 45◦ with the x-axis. This is the

property of the number e that makes it appear in so many areas of mathematis.

Figure 5

The slope at (0, 1) is not the only interesting thing about the funtion ex. The slope at any point (x, ex) is equal
to ex, or in other words (ex)

′

= ex. This is an immediate onsequene of the above property.

The purpose of this paper has been to show why the limit of the sequene

(

1 +
1

n

)n

is so speial, why this number

is the right hoie for the base of the exponential and logarithmi funtions.

Textbooks, where larity and preision are essential, usually present the ase in a di�erent order. The number e is

de�ned well before tangents and their slopes are mentioned. First it is proved in the setion on limits that the sequene

(

1 +
1

n

)n

is onvergent, and its limit is denoted by e. It is only later, after the introdution of the onepts of the

limit of a funtion and ontinuity, that the interesting property of the funtion ex in terms of di�erentiation beomes

apparent.

Exerises

1. Let n be an arbitrary positive integer. Prove from �rst priniples that

(

1 +
1

n

)n

< 3.

2. Prove that

1 +
1

1!
+

1

2!
+

1

3!
+ · · · = e.

3. Prove that the funtion

(

1 +
a

x

)x

has a limit at in�nity for every real number a.

4. De�ne the funtion exp as follows: exp (a) = lim
x→∞

(

1 +
a

x

)x

. Show that exp (a + b) = exp (a) · exp (b), and in

fat exp (a) = ea.
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5. Prove that

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · · .

In ase you haven't yet heard . . .

A di�erential operator and a funtion meet. The operator says, �Give me your values or I'll di�erentiate you.� The

funtion only laughs: �I'm ex.�

There are a lot of mnemonis to help in memorizing the digits of e. The digits orrespond to the number of letters

in the words. For example:

�By omnibus I traveled to Brooklyn.�

�We present a mnemoni to memorize a onstant so exiting that Euler exlaimed: `!' when first it

was found, yes, loudly `!'. My students perhaps will ompute e, use power or Taylor series, an easy

summation formula, obvious, lear, elegant!� (Barel, 1995)
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