
1.We want to estimate the fore exerted on the arms of a gymnast at the lowest point if he swings from a handstand

into a great irle. Apply the following simple model: Fix a homogeneous metal rod of length l and mass m at the end

of a very long rope of onstant length, and release it from its position shown in Figure 1.a. Calulate what fore is

exerted on the rope at the instant shown in Figure 1.b. (The mass of the rope is negligible.)

Figure 1

Solution. There are two fores ating on the tumbling rod: the gravitational fore mg and fore K exerted by the

rope (Figure 2 ). Both are vertial (the variable magnitude fore of the rope is also vertial, beause the rope is �very

long�). Sine there are only vertial fores ating on the rod, its mass enter an move only along a vertial line, so its

motion will be vertial (non-harmoni) osillating motion.

Figure 2

The vertial displaement of the end of the rod whih is �xed to the rope is zero throughout the motion so it will

not aelerate vertially. In the state in question, the veloity of the mass enter is zero, its aeleration is at maximum

and its magnitude equals with the aeleration of the endpoints of the rod in the frame of referene of the mass enter:

a =
l

2
ω2.

Aording to the work theorem:

mgl =
1

2

(

1

12
ml2

)

ω2,

and aording to Newton's seond law:

K −mg = m
l

2
ω2.

From the two equations it follows that

K = 13mg.

Notes. 1. The fore we get as the result is inredibly large, even if we take into onsideration that the gymnast uses two

arms and one arm is stressed by only half of this fore. It is no wonder that to many ontenders, who made a typial but false

assumption that the motion is a irular motion around the motionless end of the rope, the K = 4mg (inorret) result seemed

aeptable.

2. Though it is not asked in the phrasing of the problem, it an be useful to alulate the fore ating on the rope in any

position of the rod while inluding an angle ϕ with the vertial diretion. With similar alulations (work theorem + Newton's

seond law) the result is:

K(ϕ) =
3(cosϕ− 1)2 + 1

(3 sin2 ϕ+ 1)
2

mg.

This expression never gets to zero (Figure 3 ), and the rope never loosens, although at

ϕ ≈ 61◦ K
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signi�antly dereases (to one sixth of mg).

Figure 3

2. In a losed round-bottom �ask there is a small amount of water. Turning the �ask upside down the water stands

at about a 5 cm height in the nek of the �ask. (The inner sizes are shown in Figure 4.)

Figure 4

After this we make the �ask rotate around its vertial axis in suh a way that it turns three times per seond. We

make sure that the temperature stays onstant everywhere along the wall of the �ask. After a su�iently long time a

state of equilibrium is reahed.

Make a shemati drawing representing the position of the water inside the �ask.

Solution. At �rst glane the problem seems to be a problem of mehanis. However, it turns out to be as muh a

thermodynamial problem too. The equilibrium, whih is reahed after a �su�iently long time�, is a thermodynamial

equilibrium. The sentene about the temperature of the wall of the �ask also suggests the thermodynamial nature of

the problem.

The surfae of a uniformly rotating liquid is a paraboloid of rotation in the homogeneous gravitational �eld of the

Earth. The vertial ross-setion of this is shown in Figure 5. The equation of the �rotated parabola� in the oordinate

system depited in the �gure is

y =
ω2

2g
x2.

Figure 5
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Examining the atual data in the problem, it an easily be seen that the surfae of the rotating liquid takes the

form of a paraboloid of rotation without the edge of the liquid reahing up to the sphere. However, one question may

arise � and it was the lue to the orret solution � whether if we ontinue the surfae of the paraboloid beyond the

nek would it ut into the sphere or not? If it did, there ould be water also in the sphere under the paraboloid of

rotation.

Take again the vertial ross-setion, whih ontains the axis of rotation. Determine the lowest point of the parabola

osulating with the irle, whih is the ross-setion of the sphere. Let the depth of this point ompared to the enter

of the irle be h. Then the equation of the parabola (take the enter of the irle as the origin of the oordinate

system) is:

y + h =
ω2

2g
x2,

The equation of the irle is: x2 + y2 = R2
. Expressing x2

from this and substituting it into the equation of the

parabola, for the y oordinates of the ommon points of the parabola and the irle we get the quadrati equation

y2 +
2g

ω2
y +

2gh

ω2
−R2 = 0.

Figure 6

When the parabola and the irle osulate (F igure 6.), the above equation an have only one root and therefore

the disriminant must be zero and this gives the ondition for h

h =
g

2ω2
+

ω2

2g
R2.

Substituting the data g = 9.81 m/s
2
, ω = 2π · 3 s−1

, R = 0.1 m we get h = 0.195 m = 19.5 cm. The radius of the

sphere is 10 m, the length of the nek is also 10 m and these two together are more than 19.5 cm.

This means that the paraboloid osulating with the sphere goes half a entimeter above the lowest point of the

nek of the �ask turned upside-down. However, the paraboloid whih gives the solution of the problem is somewhat

above this in a way that the amount of water in the nek under the paraboloid is less than the original quantity by

the same amount as the amount whih is in a narrow band in the sphere under the paraboloid.

But how did the water get there? Some of the ontestants thought when the �ask was being aelerated the water

ould have spattered there. This assumption learly shows that students have interesting experienes with the stirring

equipment in the shool laboratories. This is not the solution of ourse, but that the evaporating water from the nek

preipitates in a ertain plae on the wall of the �ask. The driving fore of this thermodynamial proess inside the

�ask is the tiny pressure gradient mutually aused by the rotation and the earth's gravitational �eld. Looking from a

rotating frame of referene the water is in equilibrium along a paraboloid of rotation, beause this is the ondition that

determines the shape of the surfae. Comparing di�erent paraboloids of rotation, on the higher surfaes the energy of

the water is higher than on lower ones. In a state of equilibrium the water surfae must be the same paraboloid both

in the nek and in the sphere. If it were not so, the evaporation-preipitation proess would �nd the state of smaller

overall energy.

Consequently, the draft shown in Figure 7 is the orret solution (with a proper explanation).

Figure 7
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Notes. 1. The determination of the exat position of the paraboloid was not expeted here, sine it an hardly be done with

the mathematis learned in the seondary shool.

2. Bene Béky, a ontestant from Budapest found out how there ould be water on the wall of the �ask, but he doesn't

think it an really happen. As he writes: �This does not happen similarly to the fat that water in a glass does not limb out on

the table however small an energy level ould be there�. The interesting thing is that it an limb out even in perfet thermal

equilibrium and just beause of that small air pressure di�erene that is between the surfae of the water in the glass and the

table (or rather the �oor). Covering the glass of water standing on a table with a bell jar this experiment an be arried out.

It might take a while though. (Without the bell jar the water will also �limb out� of the glass, but beause of the big spae in

the room it won't preipitate anywhere, so it stays in the air as unsaturated vapour.)

3. Two insulator hemispheri shells (e.g. two halves of a table-tennis ball) are plaed near to eah other aording

to Figure 8.a in a onentri arrangement. Charge them uniformly with eletri harges Q and q respetively.

a) What fore do the two bodies exert on eah other?

b) Does the result hange if the radius of one hemisphere is dereased to half of its original?

Figure 8

Solution. �If you an't solve a problem, make an easier one of it for yourself.� is the advie of György Pólya

(1888�1985) in his book of �How to solve it�. Let us try to do the same until we get a problem we an solve. From

there if we reonsider the hain of thoughts that lead us to the solution we ould �nd ideas leading to the solution of

more di�ult problems.

Let us �rst deal with question a). What would be the ase if the eletri harge on both of the hemispheri shells

were equal (Q,Q)? What would be the ase if the harges were of opposite sign (Q,−Q)? Here, the plane apaitor

omes to mind.

On the plates of a plane apaitor harged up to harge Q there are harges Q and −Q, and there is a homogeneous

eletri �eld E between them. The energy of the apaitor is

W =
Q2

2C
=

Q2

2ε0A
x,

from where the fore, the plates are exerting on eah other, is

F =
Q2

2ε0A
=

1

2
Q

Q

ε0A
=

1

2
QE.

Let us start stepping bak from here. If the harges on the plates are not Q and −Q, but Q and +Q, then the

di�erene is that they don't attrat but rather repel eah other. E is now the magnitude of the eletri �eld strength

at the outer side of the plates.

The eletri �eld of two uniformly harged shells of harges Q plaed faing eah other is the same as the �eld

outside of a single sphere harged up to 2Q. The �eld strength in this ase outside the sphere equals the eletri �eld

strength deriving from a 2Q point harge plaed in the middle of the sphere

E =
1

4πε0

2Q

R2
.

The harge density on the surfae of the sphere is:

σ =
2Q

4R2π
=

Q

2R2π
= (ε0E).

The energy density (energy ontent of the unit volume, a pressure-like quantity) on the surfae of the sphere is:

p =
1

2
ε0E

2 =
1

2
σE.

The fore ating on an eletrially harged surfae element of a given size, is uniquely determined by the area and the

eletri harge density of the surfae and the eletri �eld strength in its near proximity. This eletrostati �pressure�
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is the same as parameter p (energy density) expressed above, not only for a plane apaitor, but also for a harged

hemispheri shell. The resultant fore exerted on the hemispheri shell is the same as the one that would be exerted

on an imaginary irular dis that would lose the hemisphere under pressure p (sine the resultant fore exerted on

a losed hemisphere in a gas of pressure p is learly zero). The fore in question is

F = p · R2π =
1

2
σE ·R2π =

1

2

1

4πε0

Q2

R2
.

We have alulated the fore ating between the two hemispheri shells of eletri harge Q eah that are plaed

faing eah other. Let us now get bak to the original question a), whih di�ers from the one we disussed above only

in that the eletri harge on one of the shells is not Q but q instead. The eletrostati fore is proportional to the

harge of the body, therefore

Fa =
q

Q
F =

1

2

1

4πε0

Qq

R2
.

Remark. As an be seen we have derived a very similar formula to Coulomb's law, only the numeri oe�ient di�ering from

the known formula. We ould even �nd the plaes where the point harges Q and q should be plaed to exert the same fore on

eah other, but this was not an objetive of the problem. The points in question do not oinide with the mass enters of the

homogeneous mass density hemispheri shells, as it was stated falsely by some ontestants. The reason for the di�erene is that

only the e�et of the homogeneous gravitational �eld an be substituted by a fore ating in the mass enter, and the Coulomb

�eld here is inhomogeneous!

To answer question b), remember again the advie of György Pólya. In the problem there is an asymmetri

arrangement, so let us �rst try a symmetri one that is presumably easier to handle. Add to arrangement b) its mirror

image (Figure 9 ).

Figure 9

Write down the fores ating between the two left side hemispherial shells and the two right side hemispherial shells.

It an be expressed as a sum of four fores

F = FQ→Q + Fq→q + FQ→q + Fq→Q

The last two terms of the sum are equal to eah other and to the fore Fb whih we are looking for. If we an alulate

F then knowing FQ→Q and Fq→q (from the solution of question a)) the sought fore an be determined.

To alulate F let us onsider the eletri �eld generated by two onentri spherial shells, the inner with radius

r and of harge 2q, and the outer with radius R and harge 2Q. This is pratially the eletri �eld generated by the

four hemispheri shells.

Figure 10
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Inside the smaller spherial shell (Figure 10.) the eletri �eld strength is zero. The harge density on the surfae

is

σq =
q

2r2π
.

The �eld strength at the surfae of the sphere, but outside is

E1 =
1

4πε0

2q

r2
.

The �eld of the smaller sphere at the surfae of the bigger one, inside is

E2 =
1

4πε0

2q

R2
.

The harge density at the surfae of the larger sphere is

σQ =
Q

2R2π
.

In regions outside the larger sphere the eletri �eld strength is derived from both of the spheres. The magnitude of

the eletri �eld strength is

E3 =
1

4πε0

2q + 2Q

R2
.

With the help of the above expressions � following the hain of thought applied in solving question a) � F an be

alulated in the following way:

F =
1

2
σq E1 r

2π +
1

2
σQ(E2 + E3)R

2π.

F an be determined by substituting the above expressions for σq, σQ, E1, E2 and E3.

Using the solution for question a)

FQ→Q =
1

2

1

4πε0

Q2

R2
and Fq→q =

1

2

1

4πε0

q2

r2
.

Then for the desired Fb = Fq→Q we get

Fb =
1

2

1

4πε0

Qq

R2
.

The solution is surprising sine it is independent of r and so the fore is the same in ase b) as it was in ase a)! (After
suh a lengthy alulation we have ertainly deserved a pleasant surprise.)

Notes. Those ontestants who answered question b) had some exellent ideas. 1. Márton Nagy (Budapest) surrounded the

arrangement shown in Figure 11.a (where for the sake of simpliity only the fore exerted on the smaller hemispheri shell

is indiated) with a spherial shell of a slightly larger radius than R and of a harge of −2Q (Figure 11.b). Thus the fore

between the hemispheri shells does not hange, sine the eletri �eld strength deriving from a uniformly harged sphere is

zero in its interior. This arrangement is obviously equivalent with the one that an be seen in Figure 11., from where we get

to the one shown in Figure 11.d by hanging the sign of −Q. Let us take the re�etion of the arrangement about the plane

separating the hemispheres (Figure 11.e). The result is that a hemisphere of harge Q (uniform) exerts the same fore on an

interior hemisphere of harge q as on an exterior hemisphere of harge q. Aording to this it would exert a fore of 2F on a

sphere of harge 2q, and therefore on a sphere of harge q it would exert only its half, that is fore F (Figure 11.f ).
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Figure 11

Now we only have to utilize the ation-reation priniple: a sphere of harge q (the eletri �eld of whih an be substituted

with the �eld of a point harge outside of the sphere, whih means it is independent of r) exerts the same fore F on a hemispheri

shell of harge Q as the fore we are looking for (Figure 11.g). The �nal result an be found by applying Coulomb's law and

the gas pressure analogy.

F =
1

4πε0

q

R2
·

Q

2πR2
· R

2
π =

1

8πε0

Qq

R2
.

2. Endre Csóka (Debreen) got even further in the generalization of the problem. He � with a re�etion method similar to

the previous one � showed that the fore F ating between the hemispheri shells is the same as expressed above even if the axes

of symmetry of the two shells inlude an arbitrary angle α with eah other. The magnitude of the fore apart from the produt

of the harges is dependent on the radius of the larger hemispheri shell only. Its diretion is parallel with the axis of symmetry

of the larger hemisphere though in general its line of ation does not pass through the ommon enter of the hemispherial

shells (Figure 12.a). This result is also surprising, beause if r and R are about the same, and there is only a tiny di�erene

between them, the diretion of the fore

hanges abruptly depending on whih radius is larger (Figures 12.b and 12.).

Figure 12
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