
1.We want to estimate the for
e exerted on the arms of a gymnast at the lowest point if he swings from a handstand

into a great 
ir
le. Apply the following simple model: Fix a homogeneous metal rod of length l and mass m at the end

of a very long rope of 
onstant length, and release it from its position shown in Figure 1.a. Cal
ulate what for
e is

exerted on the rope at the instant shown in Figure 1.b. (The mass of the rope is negligible.)

Figure 1

Solution. There are two for
es a
ting on the tumbling rod: the gravitational for
e mg and for
e K exerted by the

rope (Figure 2 ). Both are verti
al (the variable magnitude for
e of the rope is also verti
al, be
ause the rope is �very

long�). Sin
e there are only verti
al for
es a
ting on the rod, its mass 
enter 
an move only along a verti
al line, so its

motion will be verti
al (non-harmoni
) os
illating motion.

Figure 2

The verti
al displa
ement of the end of the rod whi
h is �xed to the rope is zero throughout the motion so it will

not a

elerate verti
ally. In the state in question, the velo
ity of the mass 
enter is zero, its a

eleration is at maximum

and its magnitude equals with the a

eleration of the endpoints of the rod in the frame of referen
e of the mass 
enter:

a =
l

2
ω2.

A

ording to the work theorem:

mgl =
1

2

(

1

12
ml2

)

ω2,

and a

ording to Newton's se
ond law:

K −mg = m
l

2
ω2.

From the two equations it follows that

K = 13mg.

Notes. 1. The for
e we get as the result is in
redibly large, even if we take into 
onsideration that the gymnast uses two

arms and one arm is stressed by only half of this for
e. It is no wonder that to many 
ontenders, who made a typi
al but false

assumption that the motion is a 
ir
ular motion around the motionless end of the rope, the K = 4mg (in
orre
t) result seemed

a

eptable.

2. Though it is not asked in the phrasing of the problem, it 
an be useful to 
al
ulate the for
e a
ting on the rope in any

position of the rod while in
luding an angle ϕ with the verti
al dire
tion. With similar 
al
ulations (work theorem + Newton's

se
ond law) the result is:

K(ϕ) =
3(cosϕ− 1)2 + 1

(3 sin2 ϕ+ 1)
2

mg.

This expression never gets to zero (Figure 3 ), and the rope never loosens, although at

ϕ ≈ 61◦ K
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signi�
antly de
reases (to one sixth of mg).

Figure 3

2. In a 
losed round-bottom �ask there is a small amount of water. Turning the �ask upside down the water stands

at about a 5 cm height in the ne
k of the �ask. (The inner sizes are shown in Figure 4.)

Figure 4

After this we make the �ask rotate around its verti
al axis in su
h a way that it turns three times per se
ond. We

make sure that the temperature stays 
onstant everywhere along the wall of the �ask. After a su�
iently long time a

state of equilibrium is rea
hed.

Make a s
hemati
 drawing representing the position of the water inside the �ask.

Solution. At �rst glan
e the problem seems to be a problem of me
hani
s. However, it turns out to be as mu
h a

thermodynami
al problem too. The equilibrium, whi
h is rea
hed after a �su�
iently long time�, is a thermodynami
al

equilibrium. The senten
e about the temperature of the wall of the �ask also suggests the thermodynami
al nature of

the problem.

The surfa
e of a uniformly rotating liquid is a paraboloid of rotation in the homogeneous gravitational �eld of the

Earth. The verti
al 
ross-se
tion of this is shown in Figure 5. The equation of the �rotated parabola� in the 
oordinate

system depi
ted in the �gure is

y =
ω2

2g
x2.

Figure 5

2



Examining the a
tual data in the problem, it 
an easily be seen that the surfa
e of the rotating liquid takes the

form of a paraboloid of rotation without the edge of the liquid rea
hing up to the sphere. However, one question may

arise � and it was the 
lue to the 
orre
t solution � whether if we 
ontinue the surfa
e of the paraboloid beyond the

ne
k would it 
ut into the sphere or not? If it did, there 
ould be water also in the sphere under the paraboloid of

rotation.

Take again the verti
al 
ross-se
tion, whi
h 
ontains the axis of rotation. Determine the lowest point of the parabola

os
ulating with the 
ir
le, whi
h is the 
ross-se
tion of the sphere. Let the depth of this point 
ompared to the 
enter

of the 
ir
le be h. Then the equation of the parabola (take the 
enter of the 
ir
le as the origin of the 
oordinate

system) is:

y + h =
ω2

2g
x2,

The equation of the 
ir
le is: x2 + y2 = R2
. Expressing x2

from this and substituting it into the equation of the

parabola, for the y 
oordinates of the 
ommon points of the parabola and the 
ir
le we get the quadrati
 equation

y2 +
2g

ω2
y +

2gh

ω2
−R2 = 0.

Figure 6

When the parabola and the 
ir
le os
ulate (F igure 6.), the above equation 
an have only one root and therefore

the dis
riminant must be zero and this gives the 
ondition for h

h =
g

2ω2
+

ω2

2g
R2.

Substituting the data g = 9.81 m/s
2
, ω = 2π · 3 s−1

, R = 0.1 m we get h = 0.195 m = 19.5 cm. The radius of the

sphere is 10 
m, the length of the ne
k is also 10 
m and these two together are more than 19.5 cm.

This means that the paraboloid os
ulating with the sphere goes half a 
entimeter above the lowest point of the

ne
k of the �ask turned upside-down. However, the paraboloid whi
h gives the solution of the problem is somewhat

above this in a way that the amount of water in the ne
k under the paraboloid is less than the original quantity by

the same amount as the amount whi
h is in a narrow band in the sphere under the paraboloid.

But how did the water get there? Some of the 
ontestants thought when the �ask was being a

elerated the water


ould have spattered there. This assumption 
learly shows that students have interesting experien
es with the stirring

equipment in the s
hool laboratories. This is not the solution of 
ourse, but that the evaporating water from the ne
k

pre
ipitates in a 
ertain pla
e on the wall of the �ask. The driving for
e of this thermodynami
al pro
ess inside the

�ask is the tiny pressure gradient mutually 
aused by the rotation and the earth's gravitational �eld. Looking from a

rotating frame of referen
e the water is in equilibrium along a paraboloid of rotation, be
ause this is the 
ondition that

determines the shape of the surfa
e. Comparing di�erent paraboloids of rotation, on the higher surfa
es the energy of

the water is higher than on lower ones. In a state of equilibrium the water surfa
e must be the same paraboloid both

in the ne
k and in the sphere. If it were not so, the evaporation-pre
ipitation pro
ess would �nd the state of smaller

overall energy.

Consequently, the draft shown in Figure 7 is the 
orre
t solution (with a proper explanation).

Figure 7
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Notes. 1. The determination of the exa
t position of the paraboloid was not expe
ted here, sin
e it 
an hardly be done with

the mathemati
s learned in the se
ondary s
hool.

2. Ben
e Béky, a 
ontestant from Budapest found out how there 
ould be water on the wall of the �ask, but he doesn't

think it 
an really happen. As he writes: �This does not happen similarly to the fa
t that water in a glass does not 
limb out on

the table however small an energy level 
ould be there�. The interesting thing is that it 
an 
limb out even in perfe
t thermal

equilibrium and just be
ause of that small air pressure di�eren
e that is between the surfa
e of the water in the glass and the

table (or rather the �oor). Covering the glass of water standing on a table with a bell jar this experiment 
an be 
arried out.

It might take a while though. (Without the bell jar the water will also �
limb out� of the glass, but be
ause of the big spa
e in

the room it won't pre
ipitate anywhere, so it stays in the air as unsaturated vapour.)

3. Two insulator hemispheri
 shells (e.g. two halves of a table-tennis ball) are pla
ed near to ea
h other a

ording

to Figure 8.a in a 
on
entri
 arrangement. Charge them uniformly with ele
tri
 
harges Q and q respe
tively.

a) What for
e do the two bodies exert on ea
h other?

b) Does the result 
hange if the radius of one hemisphere is de
reased to half of its original?

Figure 8

Solution. �If you 
an't solve a problem, make an easier one of it for yourself.� is the advi
e of György Pólya

(1888�1985) in his book of �How to solve it�. Let us try to do the same until we get a problem we 
an solve. From

there if we re
onsider the 
hain of thoughts that lead us to the solution we 
ould �nd ideas leading to the solution of

more di�
ult problems.

Let us �rst deal with question a). What would be the 
ase if the ele
tri
 
harge on both of the hemispheri
 shells

were equal (Q,Q)? What would be the 
ase if the 
harges were of opposite sign (Q,−Q)? Here, the plane 
apa
itor


omes to mind.

On the plates of a plane 
apa
itor 
harged up to 
harge Q there are 
harges Q and −Q, and there is a homogeneous

ele
tri
 �eld E between them. The energy of the 
apa
itor is

W =
Q2

2C
=

Q2

2ε0A
x,

from where the for
e, the plates are exerting on ea
h other, is

F =
Q2

2ε0A
=

1

2
Q

Q

ε0A
=

1

2
QE.

Let us start stepping ba
k from here. If the 
harges on the plates are not Q and −Q, but Q and +Q, then the

di�eren
e is that they don't attra
t but rather repel ea
h other. E is now the magnitude of the ele
tri
 �eld strength

at the outer side of the plates.

The ele
tri
 �eld of two uniformly 
harged shells of 
harges Q pla
ed fa
ing ea
h other is the same as the �eld

outside of a single sphere 
harged up to 2Q. The �eld strength in this 
ase outside the sphere equals the ele
tri
 �eld

strength deriving from a 2Q point 
harge pla
ed in the middle of the sphere

E =
1

4πε0

2Q

R2
.

The 
harge density on the surfa
e of the sphere is:

σ =
2Q

4R2π
=

Q

2R2π
= (ε0E).

The energy density (energy 
ontent of the unit volume, a pressure-like quantity) on the surfa
e of the sphere is:

p =
1

2
ε0E

2 =
1

2
σE.

The for
e a
ting on an ele
tri
ally 
harged surfa
e element of a given size, is uniquely determined by the area and the

ele
tri
 
harge density of the surfa
e and the ele
tri
 �eld strength in its near proximity. This ele
trostati
 �pressure�
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is the same as parameter p (energy density) expressed above, not only for a plane 
apa
itor, but also for a 
harged

hemispheri
 shell. The resultant for
e exerted on the hemispheri
 shell is the same as the one that would be exerted

on an imaginary 
ir
ular dis
 that would 
lose the hemisphere under pressure p (sin
e the resultant for
e exerted on

a 
losed hemisphere in a gas of pressure p is 
learly zero). The for
e in question is

F = p · R2π =
1

2
σE ·R2π =

1

2

1

4πε0

Q2

R2
.

We have 
al
ulated the for
e a
ting between the two hemispheri
 shells of ele
tri
 
harge Q ea
h that are pla
ed

fa
ing ea
h other. Let us now get ba
k to the original question a), whi
h di�ers from the one we dis
ussed above only

in that the ele
tri
 
harge on one of the shells is not Q but q instead. The ele
trostati
 for
e is proportional to the


harge of the body, therefore

Fa =
q

Q
F =

1

2

1

4πε0

Qq

R2
.

Remark. As 
an be seen we have derived a very similar formula to Coulomb's law, only the numeri
 
oe�
ient di�ering from

the known formula. We 
ould even �nd the pla
es where the point 
harges Q and q should be pla
ed to exert the same for
e on

ea
h other, but this was not an obje
tive of the problem. The points in question do not 
oin
ide with the mass 
enters of the

homogeneous mass density hemispheri
 shells, as it was stated falsely by some 
ontestants. The reason for the di�eren
e is that

only the e�e
t of the homogeneous gravitational �eld 
an be substituted by a for
e a
ting in the mass 
enter, and the Coulomb

�eld here is inhomogeneous!

To answer question b), remember again the advi
e of György Pólya. In the problem there is an asymmetri


arrangement, so let us �rst try a symmetri
 one that is presumably easier to handle. Add to arrangement b) its mirror

image (Figure 9 ).

Figure 9

Write down the for
es a
ting between the two left side hemispheri
al shells and the two right side hemispheri
al shells.

It 
an be expressed as a sum of four for
es

F = FQ→Q + Fq→q + FQ→q + Fq→Q

The last two terms of the sum are equal to ea
h other and to the for
e Fb whi
h we are looking for. If we 
an 
al
ulate

F then knowing FQ→Q and Fq→q (from the solution of question a)) the sought for
e 
an be determined.

To 
al
ulate F let us 
onsider the ele
tri
 �eld generated by two 
on
entri
 spheri
al shells, the inner with radius

r and of 
harge 2q, and the outer with radius R and 
harge 2Q. This is pra
ti
ally the ele
tri
 �eld generated by the

four hemispheri
 shells.

Figure 10
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Inside the smaller spheri
al shell (Figure 10.) the ele
tri
 �eld strength is zero. The 
harge density on the surfa
e

is

σq =
q

2r2π
.

The �eld strength at the surfa
e of the sphere, but outside is

E1 =
1

4πε0

2q

r2
.

The �eld of the smaller sphere at the surfa
e of the bigger one, inside is

E2 =
1

4πε0

2q

R2
.

The 
harge density at the surfa
e of the larger sphere is

σQ =
Q

2R2π
.

In regions outside the larger sphere the ele
tri
 �eld strength is derived from both of the spheres. The magnitude of

the ele
tri
 �eld strength is

E3 =
1

4πε0

2q + 2Q

R2
.

With the help of the above expressions � following the 
hain of thought applied in solving question a) � F 
an be


al
ulated in the following way:

F =
1

2
σq E1 r

2π +
1

2
σQ(E2 + E3)R

2π.

F 
an be determined by substituting the above expressions for σq, σQ, E1, E2 and E3.

Using the solution for question a)

FQ→Q =
1

2

1

4πε0

Q2

R2
and Fq→q =

1

2

1

4πε0

q2

r2
.

Then for the desired Fb = Fq→Q we get

Fb =
1

2

1

4πε0

Qq

R2
.

The solution is surprising sin
e it is independent of r and so the for
e is the same in 
ase b) as it was in 
ase a)! (After
su
h a lengthy 
al
ulation we have 
ertainly deserved a pleasant surprise.)

Notes. Those 
ontestants who answered question b) had some ex
ellent ideas. 1. Márton Nagy (Budapest) surrounded the

arrangement shown in Figure 11.a (where for the sake of simpli
ity only the for
e exerted on the smaller hemispheri
 shell

is indi
ated) with a spheri
al shell of a slightly larger radius than R and of a 
harge of −2Q (Figure 11.b). Thus the for
e

between the hemispheri
 shells does not 
hange, sin
e the ele
tri
 �eld strength deriving from a uniformly 
harged sphere is

zero in its interior. This arrangement is obviously equivalent with the one that 
an be seen in Figure 11.
, from where we get

to the one shown in Figure 11.d by 
hanging the sign of −Q. Let us take the re�e
tion of the arrangement about the plane

separating the hemispheres (Figure 11.e). The result is that a hemisphere of 
harge Q (uniform) exerts the same for
e on an

interior hemisphere of 
harge q as on an exterior hemisphere of 
harge q. A

ording to this it would exert a for
e of 2F on a

sphere of 
harge 2q, and therefore on a sphere of 
harge q it would exert only its half, that is for
e F (Figure 11.f ).
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Figure 11

Now we only have to utilize the a
tion-rea
tion prin
iple: a sphere of 
harge q (the ele
tri
 �eld of whi
h 
an be substituted

with the �eld of a point 
harge outside of the sphere, whi
h means it is independent of r) exerts the same for
e F on a hemispheri


shell of 
harge Q as the for
e we are looking for (Figure 11.g). The �nal result 
an be found by applying Coulomb's law and

the gas pressure analogy.

F =
1

4πε0

q

R2
·

Q

2πR2
· R

2
π =

1

8πε0

Qq

R2
.

2. Endre Csóka (Debre
en) got even further in the generalization of the problem. He � with a re�e
tion method similar to

the previous one � showed that the for
e F a
ting between the hemispheri
 shells is the same as expressed above even if the axes

of symmetry of the two shells in
lude an arbitrary angle α with ea
h other. The magnitude of the for
e apart from the produ
t

of the 
harges is dependent on the radius of the larger hemispheri
 shell only. Its dire
tion is parallel with the axis of symmetry

of the larger hemisphere though in general its line of a
tion does not pass through the 
ommon 
enter of the hemispheri
al

shells (Figure 12.a). This result is also surprising, be
ause if r and R are about the same, and there is only a tiny di�eren
e

between them, the dire
tion of the for
e


hanges abruptly depending on whi
h radius is larger (Figures 12.b and 12.
).

Figure 12
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