Second round

1. Solve the following simultaneous equations on the set of integers:

$$
\begin{aligned}
& a b+c d=-1 \\
& a c+b d=-1 \\
& a d+b c=-1
\end{aligned}
$$

2. In a right-angled triangle of legs a and b, the altitude drawn to the hypotenuse equals one fourth of the hypotenuse. Evaluate

$$
\left(\frac{a}{b}\right)^{6}+\left(\frac{b}{a}\right)^{6}
$$

3. Prove that if

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}
$$

for the real numbers a, b, c then

$$
\frac{1}{a^{1001}}+\frac{1}{b^{1001}}+\frac{1}{c^{1001}}=\frac{1}{a^{1001}+b^{1001}+c^{1001}}
$$

4. The diagonals $A C$ and $B D$ of a convex quadrilateral $A B C D$ are perpendicular. From the midpoint K of side $A B$, drop a perpendicular onto the line of side $D C$. Let P denote the foot of the perpendicular. From the midpoint L of side $A D$, drop a perpendicular onto the line of side $B C$ and denote its foot by Q. Prove that the lines $K P$ and $L Q$ intersect on the line of diagonal $A C$.

Third round (final)

1. How many n-digit positive integers are there (in base 10), the sum of whose digits is $n^{3}-40$, where n is a positive integer?
2. In a triangle $A B C, B C<C A<A B$. The perpendicular bisectors of side $B C$ and side $A C$ intersect the line of the altitude drawn from vertex C at the points P and Q, respectively. Determine the largest angle of the triangle, given that $4 C P \cdot C Q=A B^{2}$.
3. Consider the sequence $1,2,3, \ldots, 2002$. One may rearrange the sequence as follows: It is allowed to put the last number in any of the 1 st, 2 nd, 3 rd, ..., 2002nd places, provided that the number moved forward from the end never precedes a greater number than itself. The same procedure can be applied to the new sequence and repeated as long as it is possible. Prove that after each step, one of the $(2 k-1)$ th and the $2 k$ th terms of the sequence thus obtained will be even and the other will be odd, for all $1 \leq k \leq 1001$.

Schools with advanced mathematics programme

First round

1. Prove that if

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}
$$

for the real numbers a, b, c then

$$
\frac{1}{a^{1001}}+\frac{1}{b^{1001}}+\frac{1}{c^{1001}}=\frac{1}{a^{1001}+b^{1001}+c^{1001}}
$$

2. A square of side a is rotated about its centre, and thus a new square is obtained. The common part of the two squares is an equilateral octagon of side b.
a) Express the area of the octagon in terms of a and b.
b) Prove that

$$
\sqrt{t \cdot T}<a^{2}<\sqrt{\frac{t^{2}+T^{2}}{2}}
$$

where t and T denote the areas of the intersection and union of the two squares, respectively.
3. The lines of the sides of an equilateral triangle $A B C$ in the interior of a circle k intersect the circle at the points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ as follows: The intersections of line $A B$ with the circle are A_{1} and B_{2}, the intersections of $B C$ are B_{1} and C_{2}, and the intersections of $C A$ are C_{1} and A_{2}, as shown in the Figure.

Prove that

$$
A A_{1}+B B_{1}+C C_{1}=A A_{2}+B B_{2}+C C_{2}
$$

4. Given that the sum of 121 positive integers is 360 , prove that it is possible to select some numbers out of the 121 , such that their sum is 120 .

Second (final) round

1. Prove that no matter what positive integer the base of the number system is, it is always true that if the ratio of the number $\overline{a b c}$ to $\overline{c b a}$ is 2 then $a+c=b$.
2. P is a point inside or on the boundary of a regular polygon with $2 k+1$ sides. Let

$$
d_{1} \leq d_{2} \leq \cdots \leq d_{2 k+1}
$$

denote the distances of P from the vertices, in increasing order. For what point will d_{k+1} be a maximum?
3. N microchips can test one another as follows: If any two are connected, each of them will display whether the other is good or faulty. A good chip will always answer correctly while a faulty chip will give a random answer. Given that more than half of the chips are good, is it possible to select a good chip with certainty in less than N trials?

