
Introdu
tion

The Fields Medal is universally 
onsidered as the highest distin
tion in the �eld of mathemati
al s
ien
es. It is

awarded every four years during the session of the International Congress of Mathemati
ians. The most re
ent su
h


ongress was held last summer in Beijing, China. It is therefore a good opportunity for us to give an overview of the

history of the prize and to present brie�y the work of some outstanding mathemati
ians who re
eived the medal.

As it is well known, there is no Nobel Prize in mathemati
s. There are several rumours 
ir
ulating about the


auses of this disfavour, among whi
h the most entertaining is the one a

ording to whi
h Nobel had a grudge against

mathemati
ians be
ause the most in�uential Swedish mathemati
ian of his time, Gösta Mittag-Le�er had sedu
ed his

wife. This ane
dote has a minor short
oming, namely that Nobel never married. On the other hand, it is rather probable

that Nobel and Mittag-Le�er were not on good terms. However, a good friend of Mittag-Le�er's was the Canadian

mathemati
ian John Charles Fields, who, 
oming from a 
ountry where s
ienti�
 resear
h was only starting to develop

at the beginning of the last 
entury, was a great promoter of the development of international s
ienti�
 relations.

In parti
ular, in 1931 he initiated the foundation of an international prize honouring outstanding mathemati
ians,


on
eived in part as a repla
ement for the Nobel Prize. A

ording to his proje
t, an international 
ommittee would

sele
t two laureates (in 1966 the maximal number of laureates was raised to four) every four years who would re
eive

their prize during the International Congress of Mathemati
ians. But unfortunately his 1931 death prevented him

from assisting at the �rst prize 
eremony, held in 1936. In his will he bequeathed 46 000 Canadian dollars of the time

to the international foundation supporting the prize, a sum that of 
ourse 
annot be 
ompared to Nobel's lega
y.

A

ordingly, the 
ash prize a

ompanying the medal is rather modest: 
urrently it is 15 000 Canadian dollars (less

than 10 000 USD).

However, the prestige of the prize is all the more important, due to the eminen
e of the members of the prize


ommittee and of the previous laureates. Just like the Nobel prize, the Fields Medal is not an award for lifetime

a
hievement, but rather a re
ognition for parti
ular outstanding results. There is, however, an important restri
tion

whi
h distinguishes it from the majority of similar s
ienti�
 prizes, namely the 
ondition that the re
ipient should

have dis
overed the result for whi
h he/she is distinguished before the age of 40. The reason why Fields imposed this

restri
tion was that he wanted the prize to be not only a re
ognition of a
hievements in the past but also a stimulus for

further resear
h. In su
h a way, he maybe also wanted to dissipate the misbelief, still rather virulent today, a

ording

to whi
h mathemati
ians make their greatest dis
overies at a very early age and then qui
kly fade away. In fa
t, the

truth is that most mathemati
ians are at the pinna
le of their 
areer during their thirties and forties, so the limit

drawn by Fields seems to be justi�ed. Fields' intention is moreover 
on�rmed by the fa
t that most Fields Medalists


ontinued to dis
over important results after re
eiving the honour � some of them even in �elds other than those in

whi
h their work was re
ognized by the prize.

On the other hand, the age limit 
an also be mer
iless: many eminent mathemati
ians 
ould not get the prize

be
ause they attained the a
me of their 
areer after the age of 40. The most prominent of su
h 
ases is that of

Andrew Wiles, who proved Fermat's Last Theorem at the age of 41. After a long debate, he was �nally awarded a

spe
ial tribute by the Congress for this seminal a
hievement. S
holars who have missed the Fields Medal 
an also

draw 
onsolation from several awards for lifetime a
hievement. The most famous of these is the Wolf Prize donated

by an Israeli foundation, among whose re
ipients we �nd three mathemati
ians of Hungarian nationality or origin: the

late a
ademi
ian Paul Erd®s, Professor Peter D. Lax of the Courant Institute, New York, and the a
ademi
ian László

Lovász, formerly a professor at Eötvös University for many years, 
urrently working at Mi
rosoft Resear
h. Also, in

May 2003, the Norwegian A
ademy of S
ien
es awarded the �rst Abel Prize in Mathemati
s, intended as a substitute

for the Nobel Prize, to the Fren
h mathemati
ian (and Fields Medalist) Jean-Pierre Serre.

The list of Fields Medalists

Now let us look at the list of those mathemati
ians who have re
eived the award sin
e its foundation in 1936.

1936: Lars Ahlfors (Finnish; 
omplex analysis)

Jesse Douglas (Ameri
an; analysis, di�erential geometry)

1950: Laurent S
hwartz (Fren
h; analysis)

Atle Selberg (Norvegian; number theory)
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1954: Kunihiko Kodaira (Japanese; algebrai
 and analyti
 geometry)

Jean-Pierre Serre (Fren
h; topology)

1958: Klaus Friedri
h Roth (German; number theory)

René Thom (Fren
h; topology)

1962: Lars Hörmander (Swedish; analysis)

John Milnor (Ameri
an; topology)

1966: Mi
hael Fran
is Atiyah (British; analysis, analyti
 geometry, K-theory)

Paul Cohen (Ameri
an; set theory, mathemati
al logi
)

Alexander Grothendie
k (Fren
h; algebrai
 geometry)

Stephen Smale (Ameri
an; topology)

1970: Alan Baker (British; number theory)

Heisuke Hironaka (Japanese; algebrai
 geometry)

Sergei Novikov (Russian; topology)

John Thompson (British; algebra)

1974: Enri
o Bombieri (Italian; analysis, number theory)

David Mumford (British; algebrai
 geometry)

1978: Pierre Deligne (Belgian; algebrai
 geometry)

Charles Fe�erman (Ameri
an; 
omplex analysis)

Grigory Margulis (Russian; di�erential geometry, dynami
al systems)

Daniel Quillen (Canadian; topology, K-theory)

1982: Alain Connes (Fren
h; analysis, di�erential geometry)

William Thurston (Ameri
an; topology)

Shiu-Tung Yau (Chinese; analysis, algebrai
 and analyti
 geometry)

1986: Simon Donaldson (British; topology)

Gerd Faltings (German; algebrai
 geometry, number theory)

Mi
hael Freedman (Ameri
an; topology)

1990: Vladimir Drinfeld (Ukranian; algebrai
 geometry, algebra, mathemati
al physi
s)

Vaughan Jones (Australian; topology, mathemati
al physi
s)

Shigefumi Mori (Japanese; algebrai
 geometry)

Edward Witten (Ameri
an; mathemati
al physi
s, topology)

1994: Jean Bourgain (Belgian; analysis)

Pierre-Louis Lions (Fren
h; analysis)

Jean-Christophe Yo

oz (Fren
h; dynami
al systems)

Ye�m Zelmanov (Russian; algebra)

1998: Ri
hard Bor
herds (British; algebra)

Timothy Gowers (British; analysis, 
ombinatori
s)

Maxim Kontsevi
h (Russian; algebrai
 geometry, mathemati
al physi
s)

Curtis M
Mullen (Ameri
an; analyti
 geometry, dynami
al systems)

2002: Laurent La�orgue (Fren
h; algebrai
 geometry)

Vladimir Voevodsky (Russian; algebrai
 geometry, K-theory)

Browsing through the above list, one perhaps �rst pays attention to the nationalities of the laureates. It is no

surprise that the list is dominated by nations of great mathemati
al tradition: the Ameri
ans, the British, the Fren
h

and the Russians. But it is somewhat surprising to see that another nation with a glorious mathemati
al history is

underrepresented, namely the Germans. Unfortunately, there are histori
o-politi
al reasons for this: the bloodshed

of World War I, the Nazi di
tatorship and the division of the 
ountry during the Cold War have damaged German

mathemati
s so gravely that it is re
overing only nowadays. We must also mention the absen
e of Hungarian mathe-

mati
ians. Here the situation is that after the golden era of the �rst half of the 20th 
entury Hungarian mathemati
s

drifted o� the mainstream of international resear
h: despite the work of some leading personalities, most of the resear
h

�elds honoured by Fields Medals were not studied in Hungary. Fortunately during the past de
ade there have been

remarkable 
hanges in this respe
t and further progress 
an be expe
ted with the growing number of possibilities for

studying and travelling abroad.

If we examine the distribution of laureates a

ording to their �elds of resear
h, we 
an observe no signi�
ant


hanges during the de
ades of the award's history. Basi
ally, we �nd the great 
lassi
al bran
hes of pure mathemati
s:
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mathemati
al analysis, algebra, number theory and di�erent bran
hes of geometry (topology, di�erential geometry,

algebrai
 geometry). On the other hand, it is regrettable that some important �elds are 
ompletely negle
ted; for

instan
e, probability theory is totally absent and a single medal is allotted to mathemati
al logi
. Also, one 
an sear
h

in vain for some �elds important for appli
ations su
h as 
omputer s
ien
e, numeri
al analysis or information theory.

Workers in these domains are being honoured by the Congress sin
e 1982 with the Rolf Nevanlinna Prize, awarded at

the same time as Fields Medals.

Let us now brie�y dis
uss what sort of a
hievements are re
ognized by the Fields Medal. Roughly, these 
an be

divided into two 
ategories: the solution of famous open problems and the elaboration of new theories. Of 
ourse, the

two 
ategories are by no means independent of ea
h other. In most 
ases, the proof of a famous 
onje
ture is a
hieved

by developing new tools whi
h then 
an be used to atta
k other problems as well. On the other hand, the signi�
an
e

of a new theory is testi�ed by the previously open questions it enables to answer.

There is, however, another kind of mathemati
al a
tivity whi
h is no less important than solving problems or buil-

ding theories but 
an hardly be re
ognized by awards: the setting up of 
onje
tures. Opening a new 
ir
le of problems

or remarking the possibility of generalizing a known theorem, testing the possible statements through examples and


ounter-examples or developing resear
h programs to atta
k them often require more invention than the solution of an

already well-formulated problem. Those who are daydreaming about su
h new resear
h programs sometimes determine

the dire
tion of resear
h for de
ades to 
ome, but sin
e they are o�ering daydreams instead of 
on
rete results, it is

hard to award them with a prize for this a
tivity. For example, no Fields Medal was attributed to Robert Langlands or

Alexander Beilinson, to name but two among the most in�uential mathemati
ians of the past de
ades, although their

importan
e 
annot be better demonstrated than by the fa
t that the laureates of the year 2002, Laurent La�orgue

and Vladimir Voevodsky were re
ognized for their breakthrough in realizing these mathemati
ians' programs.

Some prize-winning results

In this last se
tion we present a few results whose authors have been distinguished by the Fields Medal. Of 
ourse,

we are by no means 
laiming that these are the most important among the many important theorems that were given

this honour. Rather, we have sele
ted results from di�erent bran
hes of mathemati
s whi
h 
an be brie�y presented

by elementary means.

• The seventh among the 23 
elebrated problems put forward by David Hilbert in 1900 
on
erns algebrai
 numbers.

A real or 
omplex number α is 
alled algebrai
 if there exists a one-variable polynomial with rational 
oe�
ients of

whi
h α is a root. For example,

√
2 is an algebrai
 number, being a root of the polynomial x2 − 2. Those numbers

whi
h are not algebrai
 are 
alled trans
endental. Two of the great a
hievements of 19th 
entury mathemati
s were

the proof of the trans
enden
e of e by Hermite in 1873, and of that of π by Lindemann in 1882. As it 
an be shown

that sums, produ
ts, quotients and even rational powers of algebrai
 integers are themselves algebrai
, one of the next

interesting questions that arise is to de
ide whether 2
√

2
is trans
endental. Hilbert gave a more general formulation: he


onje
tured that if α is an algebrai
 number di�erent from 0 and 1, and if β is an irrational algebrai
 number, then the

power αβ
is always trans
endental. Hilbert thought that this problem was very hard and even believed that (unlike the

Riemann Hypothesis and Fermat's Last Theorem) even the youngest of his generation won't see its solution. However,

the trans
enden
e of 2
√

2
was established by A. O. Gelfond as early as 1929, and then in 1934 the general 
onje
ture

was also settled by him and, independently, by Th. S
hneider. By taking the natural logarithm we 
an reformulate

the Gelfond-S
hneider theorem as the statement asserting that if α1, α2 are algebrai
 numbers di�erent from 0 and 1,

there is no irrational number β for whi
h logα1+β logα2 = 0. Alan Baker re
eived the Fields Medal for the following

far-rea
hing generalisation:

If α1, . . . , αn are algebrai
 numbers di�erent from 0 and 1 and β1, . . . , βn are algebrai
 numbers di�erent from 0
su
h that

β1 logα1 + · · ·+ βn logαn = 0,

then there exist rational numbers γ1, . . . , γn, not all equal to 0, for whi
h

γ1 logα1 + · · ·+ γn logαn = 0.

From this theorem one 
an derive for instan
e the trans
enden
e of the produ
ts eβα
β1

1
. . . αβn

n for arbitrary nonzero

algebrai
 numbers α1, . . . , αn, β1, . . . , βn, β. The theorem also has important appli
ations in the theory of diophantine

equations.

• The following interesting problem was put forward by Paul Erd®s and Paul Turán in 1936:

Let k > 2 be an integer and 0 < δ < 1 a real number. Prove that there exists a positive integer N0 (depending on

k and δ), su
h that for any N ≥ N0 an arbitrary subset of the set {1, 2, 3, . . . , N} whose 
ardinality is at least δN


ontains an aritmeti
 progression of length k.

In other words, if a subset of the set {1, 2, 3, . . . , N} is �not too sparse�, then for N large enough it must 
ontain

an arithmeti
 progression of length k. The question is di�
ult already for k = 3; in fa
t, the solution of the problem
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in this spe
ial 
ase was one of the results for whi
h K. F. Roth re
eived the Fields Medal. (The other one was a

basi
 theorem from the �eld of diophantine approximation.) But the general 
ase is mu
h more di�
ult, and the

�rst to ta
kle it was the Hungarian mathemati
ian Endre Szemerédi, by means of a very ingenious and intri
ate


ombinatorial 
onstru
tion. Then in 1977, with the help of methods from ergodi
 theory, Furstenberg found a simpler

but less elementary proof. A short
oming of both proofs is, however, that neither of them reveals mu
h about the

bound N0: Furstenberg only proves its existen
e, and the estimate obtained by Szemerédi is very high, in 
ontrast to

the mu
h �ner bounds obtained by Roth in the 
ase k = 3. The new proof by Timothy Gowers is more elementary

than that of Furstenberg, less 
ompli
ated than that Szemerédi, and gives a mu
h better bound. It was for this, and

for results obtained in the theory of so-
alled Bana
h spa
es, that he obtained the medal.

• Paul Cohen solved the most famous open problem of set theory, going ba
k to the founding father of the �eld,

Georg Cantor. It was Cantor who �rst gave a rigourous de�nition for the 
ardinality of a set: a

ording to him, two

sets have the same 
ardinality if there exists a one-to-one 
orresponden
e between their elements. In�nite sets always


ontain a proper subset that has the same 
ardinality: one of the earliest examples for this, pointed out by Cantor

himself, is the 
ase of the rationals and the integers. It was also Cantor who showed that the set of real numbers has


ardinality stri
tly greater than that of the rationals, and he 
onje
tured that there is no in�nite set whose 
ardinality

is stri
tly larger than that of the rationals but stri
tly smaller than that of the reals. Kurt Gödel showed in 1939 that

this assumption does not 
ontradi
t the universally a

epted axioms of set theory due to Zermelo and Frenkel. But

this was not enough to settle the question for it only meant that there exists a mathemati
al logi
al model in whi
h

the axioms of Zermelo and Frenkel are satis�ed and Cantor's 
onje
ture is true. Then in 1961 Cohen 
onstru
ted a

model in whi
h the Zermelo�Frenkel axioms hold but there exists a set of 
ardinality larger than that of the rationals

and smaller than that of the reals. This theorem is a milestone in the history of s
ien
e for it gives the �rst example

for a famous open question that 
annot be de
ided within the framework of a given system of axioms. On the other

hand, Cohen used in the 
onstru
tion of his logi
al model a new method 
alled �for
ing� whose development opened

up the way for very fruitful further resea
h.

• A basi
 problem in the theory of diophantine equations is to �nd those triples (x, y, z) of rational numbers that
are not all 0 and that satisfy a given homogenous polynomial equation f(x, y, z) = 0. As examples, we may mention

the �Fermat-type� equations xn + yn − zn = 0 or the quadrati
 equation y2 − xz = 0. The equation f = 0 de�nes an

algebrai
 
urve in the proje
tive plane (for instan
e, in the 
ase of the equation y2 − xz = 0 we get a 
oni
), and the

triples (x, y, z) that we are looking for give rise to points on the 
urve with rational 
oordinates. It is 
ustomary to

assume that the 
urve is smooth, whi
h means that one 
an draw a single tangent line to it in ea
h of its points. If

the polynomial f has degree one, the rational points are easy to �nd. The quadrati
 
ase is not mu
h more di�
ult:

if there exists a rational point at all, then there are in�nitely many of them, and they 
an be proje
ted from a given

point to the proje
tive line. The 
ase of degree three belongs to the theory of so-
alled ellipti
 
urves: here it may

happen that there are no rational points, or that they are �nite in number but also that there are in�nitely many.

In the latter 
ase, a basi
 theorem proven by Mordell in 1930 provides a des
ription of their stru
ture. It was also

Mordell who �rst spe
ulated about the higher degree 
ases. Here of 
ourse one should ex
lude those 
urves whi
h 
an

be transformed into a 
urve of degree at most three by a rational 
hange of 
oordinates. Of the remaining 
urves of

degree at most four Mordell 
onje
tured that they always have �nitely many rational points. As this 
onje
ture was

not 
orroborated by many numeri
al examples, it 
aused universal surprise when it was proven by Gerd Faltings in

1983. The proof used di�
ult methods from algebrai
 geometry, but later Faltings (building upon ideas by Paul Vojta

and Enri
o Bombieri) gave a se
ond, more elementary but more 
omputational proof. In any 
ase, he found the se
ond

proof su�
iently elementary so that he 
ould remark in his 
ustomary sar
asti
 style: Nowadays anyone 
an prove

Mordell's 
onje
ture.

• One of the most important areas in modern algebra is the theory of groups. A group is a set endowed with a two-

variable asso
iative operation (usually 
alled multipli
ation) having two important properties: a) there exists a unit

element, i.e. an element e for whi
h eg = ge = g for any element g of the group; b) any element g has an inverse, i.e. an

element g−1
satisfying gg−1 = g−1g = e. As examples of groups one may 
onsider the set of integers with respe
t to the

addition law (but not multipli
ation!), the set of nonzero rational numbers with respe
t to multipli
ation, isometries

of the plane or the spa
e with respe
t to the 
omposition of isometries, or � to give an example of a �nite group �

symmetries of a (�xed) regular polygon or polyhedron, also with respe
t to 
omposition. In the study of groups a

basi
 role is played by so-
alled normal subgroups. A subset H of a group G is 
alled a normal subgroup if it 
ontains

produ
ts and inverses of any two of its elements and moreover for any g ∈ G and h ∈ H it 
ontains the element

ghg−1
. In 1963 Walter Feit and John Thompson proved an open 
onje
ture of Burnside formulated several de
ades

before, whi
h asserts that any �nite group G whose 
ardinality is an odd 
omposite integer 
ontains a normal subgroup

other than G itself or the one-element subgroup formed by the unit element. This result is of 
ru
ial importan
e in the


lassi�
ation of �nite groups for it redu
es the study of �larger� groups to that of �smaller� building blo
ks. Thompson

was awarded the Fields Medal for this theorem together with other important results that he obtained in the theory

of �nite groups.

• Our last example 
omes from the �eld of topology and is intended for those familiar with the rudiments of this

theory. Re
all that a d-dimensional topologi
al manifold is a 
onne
ted topologi
al spa
e in whi
h ea
h point has

an open neighbourhood admitting a homeomorphism (i.e. a bije
tion 
ontinuous in both dire
tions) onto an open

4



subset of Eu
lidean d-spa
e. One of the basi
 problems of topology is the 
lassi�
ation of manifolds. One may try to


lassify them up to homeomorphism but it is at least as interesting to 
onsider the weaker problem of 
lassifying them

a

ording to their homotopy type. Intuitively, two manifolds have the same homotopy type if they 
an be 
ontinuously

deformed into ea
h other. For instan
e, the disk or any 
onvex �gure in the plane has the homotopy type of a point

(be
ause they are 
ontinuously 
ontra
tible). [The pre
ise de�nition is the following: two 
ontinuous maps f, g : X → Y

are homotopi
 (denote this by f ∼ g) if there exists a 
ontinuous map h : X × [0, 1] → Y satisfying h(x, 0) = f(x)
and h(x, 1) = g(x) for any x ∈ X . This being said, two manifolds M and N have the same homotopy type if there

exist 
ontinuous maps F : M → N and G : N → M with G ◦ F ∼ idM and F ◦ G ∼ idN .℄ The generalised Poin
aré


onje
ture predi
ts that any 
ompa
t manifold having the homotopy type of the d-dimensional sphere Sd
is in fa
t

homeomorphi
 to Sd
. It is not very di�
ult to verify the 
ase d = 2 of this 
onje
ture, but the 
ase d = 3 (the

original 
onje
ture of Poin
aré) is still an open problem today. Therefore it may sound surprising that in 1982Mi
hael

Freedman managed to prove the 
ase d = 4 of the 
onje
ture; moreover, he was able to 
lassify all so-
alled simply


onne
ted 
ompa
t 4-dimensional manifolds. Among the Fields Medalists the work of Stephen Smale is also related

to the Poin
aré 
onje
ture: he re
eived the honour for his proof of the 
onje
ture for any manifold of dimension d > 4
admitting a di�erentiable stru
ture. However, the 3-dimensional 
ase still resists all attempts, so it is no wonder that

in the year 2000 the Clay Foundation listed it among the seven Millennium Problems for whose solution a 
ash prize

of 1 000 000 dollars is awarded. Therefore if one of the readers happens to solve this 100-year-old problem before the

age of 40, he/she 
an safely expe
t to be
ome both a Fields Medalist and a millionaire.

Added in proof: Life may spoil the best of jokes. After the Hungarian version of this arti
le was published, G. Per-

elman announ
ed a proof of the Poin
aré Conje
ture.
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