
Introdution

The Fields Medal is universally onsidered as the highest distintion in the �eld of mathematial sienes. It is

awarded every four years during the session of the International Congress of Mathematiians. The most reent suh

ongress was held last summer in Beijing, China. It is therefore a good opportunity for us to give an overview of the

history of the prize and to present brie�y the work of some outstanding mathematiians who reeived the medal.

As it is well known, there is no Nobel Prize in mathematis. There are several rumours irulating about the

auses of this disfavour, among whih the most entertaining is the one aording to whih Nobel had a grudge against

mathematiians beause the most in�uential Swedish mathematiian of his time, Gösta Mittag-Le�er had sedued his

wife. This anedote has a minor shortoming, namely that Nobel never married. On the other hand, it is rather probable

that Nobel and Mittag-Le�er were not on good terms. However, a good friend of Mittag-Le�er's was the Canadian

mathematiian John Charles Fields, who, oming from a ountry where sienti� researh was only starting to develop

at the beginning of the last entury, was a great promoter of the development of international sienti� relations.

In partiular, in 1931 he initiated the foundation of an international prize honouring outstanding mathematiians,

oneived in part as a replaement for the Nobel Prize. Aording to his projet, an international ommittee would

selet two laureates (in 1966 the maximal number of laureates was raised to four) every four years who would reeive

their prize during the International Congress of Mathematiians. But unfortunately his 1931 death prevented him

from assisting at the �rst prize eremony, held in 1936. In his will he bequeathed 46 000 Canadian dollars of the time

to the international foundation supporting the prize, a sum that of ourse annot be ompared to Nobel's legay.

Aordingly, the ash prize aompanying the medal is rather modest: urrently it is 15 000 Canadian dollars (less

than 10 000 USD).

However, the prestige of the prize is all the more important, due to the eminene of the members of the prize

ommittee and of the previous laureates. Just like the Nobel prize, the Fields Medal is not an award for lifetime

ahievement, but rather a reognition for partiular outstanding results. There is, however, an important restrition

whih distinguishes it from the majority of similar sienti� prizes, namely the ondition that the reipient should

have disovered the result for whih he/she is distinguished before the age of 40. The reason why Fields imposed this

restrition was that he wanted the prize to be not only a reognition of ahievements in the past but also a stimulus for

further researh. In suh a way, he maybe also wanted to dissipate the misbelief, still rather virulent today, aording

to whih mathematiians make their greatest disoveries at a very early age and then quikly fade away. In fat, the

truth is that most mathematiians are at the pinnale of their areer during their thirties and forties, so the limit

drawn by Fields seems to be justi�ed. Fields' intention is moreover on�rmed by the fat that most Fields Medalists

ontinued to disover important results after reeiving the honour � some of them even in �elds other than those in

whih their work was reognized by the prize.

On the other hand, the age limit an also be meriless: many eminent mathematiians ould not get the prize

beause they attained the ame of their areer after the age of 40. The most prominent of suh ases is that of

Andrew Wiles, who proved Fermat's Last Theorem at the age of 41. After a long debate, he was �nally awarded a

speial tribute by the Congress for this seminal ahievement. Sholars who have missed the Fields Medal an also

draw onsolation from several awards for lifetime ahievement. The most famous of these is the Wolf Prize donated

by an Israeli foundation, among whose reipients we �nd three mathematiians of Hungarian nationality or origin: the

late aademiian Paul Erd®s, Professor Peter D. Lax of the Courant Institute, New York, and the aademiian László

Lovász, formerly a professor at Eötvös University for many years, urrently working at Mirosoft Researh. Also, in

May 2003, the Norwegian Aademy of Sienes awarded the �rst Abel Prize in Mathematis, intended as a substitute

for the Nobel Prize, to the Frenh mathematiian (and Fields Medalist) Jean-Pierre Serre.

The list of Fields Medalists

Now let us look at the list of those mathematiians who have reeived the award sine its foundation in 1936.

1936: Lars Ahlfors (Finnish; omplex analysis)

Jesse Douglas (Amerian; analysis, di�erential geometry)

1950: Laurent Shwartz (Frenh; analysis)

Atle Selberg (Norvegian; number theory)
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1954: Kunihiko Kodaira (Japanese; algebrai and analyti geometry)

Jean-Pierre Serre (Frenh; topology)

1958: Klaus Friedrih Roth (German; number theory)

René Thom (Frenh; topology)

1962: Lars Hörmander (Swedish; analysis)

John Milnor (Amerian; topology)

1966: Mihael Franis Atiyah (British; analysis, analyti geometry, K-theory)

Paul Cohen (Amerian; set theory, mathematial logi)

Alexander Grothendiek (Frenh; algebrai geometry)

Stephen Smale (Amerian; topology)

1970: Alan Baker (British; number theory)

Heisuke Hironaka (Japanese; algebrai geometry)

Sergei Novikov (Russian; topology)

John Thompson (British; algebra)

1974: Enrio Bombieri (Italian; analysis, number theory)

David Mumford (British; algebrai geometry)

1978: Pierre Deligne (Belgian; algebrai geometry)

Charles Fe�erman (Amerian; omplex analysis)

Grigory Margulis (Russian; di�erential geometry, dynamial systems)

Daniel Quillen (Canadian; topology, K-theory)

1982: Alain Connes (Frenh; analysis, di�erential geometry)

William Thurston (Amerian; topology)

Shiu-Tung Yau (Chinese; analysis, algebrai and analyti geometry)

1986: Simon Donaldson (British; topology)

Gerd Faltings (German; algebrai geometry, number theory)

Mihael Freedman (Amerian; topology)

1990: Vladimir Drinfeld (Ukranian; algebrai geometry, algebra, mathematial physis)

Vaughan Jones (Australian; topology, mathematial physis)

Shigefumi Mori (Japanese; algebrai geometry)

Edward Witten (Amerian; mathematial physis, topology)

1994: Jean Bourgain (Belgian; analysis)

Pierre-Louis Lions (Frenh; analysis)

Jean-Christophe Yooz (Frenh; dynamial systems)

Ye�m Zelmanov (Russian; algebra)

1998: Rihard Borherds (British; algebra)

Timothy Gowers (British; analysis, ombinatoris)

Maxim Kontsevih (Russian; algebrai geometry, mathematial physis)

Curtis MMullen (Amerian; analyti geometry, dynamial systems)

2002: Laurent La�orgue (Frenh; algebrai geometry)

Vladimir Voevodsky (Russian; algebrai geometry, K-theory)

Browsing through the above list, one perhaps �rst pays attention to the nationalities of the laureates. It is no

surprise that the list is dominated by nations of great mathematial tradition: the Amerians, the British, the Frenh

and the Russians. But it is somewhat surprising to see that another nation with a glorious mathematial history is

underrepresented, namely the Germans. Unfortunately, there are historio-politial reasons for this: the bloodshed

of World War I, the Nazi ditatorship and the division of the ountry during the Cold War have damaged German

mathematis so gravely that it is reovering only nowadays. We must also mention the absene of Hungarian mathe-

matiians. Here the situation is that after the golden era of the �rst half of the 20th entury Hungarian mathematis

drifted o� the mainstream of international researh: despite the work of some leading personalities, most of the researh

�elds honoured by Fields Medals were not studied in Hungary. Fortunately during the past deade there have been

remarkable hanges in this respet and further progress an be expeted with the growing number of possibilities for

studying and travelling abroad.

If we examine the distribution of laureates aording to their �elds of researh, we an observe no signi�ant

hanges during the deades of the award's history. Basially, we �nd the great lassial branhes of pure mathematis:
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mathematial analysis, algebra, number theory and di�erent branhes of geometry (topology, di�erential geometry,

algebrai geometry). On the other hand, it is regrettable that some important �elds are ompletely negleted; for

instane, probability theory is totally absent and a single medal is allotted to mathematial logi. Also, one an searh

in vain for some �elds important for appliations suh as omputer siene, numerial analysis or information theory.

Workers in these domains are being honoured by the Congress sine 1982 with the Rolf Nevanlinna Prize, awarded at

the same time as Fields Medals.

Let us now brie�y disuss what sort of ahievements are reognized by the Fields Medal. Roughly, these an be

divided into two ategories: the solution of famous open problems and the elaboration of new theories. Of ourse, the

two ategories are by no means independent of eah other. In most ases, the proof of a famous onjeture is ahieved

by developing new tools whih then an be used to attak other problems as well. On the other hand, the signi�ane

of a new theory is testi�ed by the previously open questions it enables to answer.

There is, however, another kind of mathematial ativity whih is no less important than solving problems or buil-

ding theories but an hardly be reognized by awards: the setting up of onjetures. Opening a new irle of problems

or remarking the possibility of generalizing a known theorem, testing the possible statements through examples and

ounter-examples or developing researh programs to attak them often require more invention than the solution of an

already well-formulated problem. Those who are daydreaming about suh new researh programs sometimes determine

the diretion of researh for deades to ome, but sine they are o�ering daydreams instead of onrete results, it is

hard to award them with a prize for this ativity. For example, no Fields Medal was attributed to Robert Langlands or

Alexander Beilinson, to name but two among the most in�uential mathematiians of the past deades, although their

importane annot be better demonstrated than by the fat that the laureates of the year 2002, Laurent La�orgue

and Vladimir Voevodsky were reognized for their breakthrough in realizing these mathematiians' programs.

Some prize-winning results

In this last setion we present a few results whose authors have been distinguished by the Fields Medal. Of ourse,

we are by no means laiming that these are the most important among the many important theorems that were given

this honour. Rather, we have seleted results from di�erent branhes of mathematis whih an be brie�y presented

by elementary means.

• The seventh among the 23 elebrated problems put forward by David Hilbert in 1900 onerns algebrai numbers.

A real or omplex number α is alled algebrai if there exists a one-variable polynomial with rational oe�ients of

whih α is a root. For example,

√
2 is an algebrai number, being a root of the polynomial x2 − 2. Those numbers

whih are not algebrai are alled transendental. Two of the great ahievements of 19th entury mathematis were

the proof of the transendene of e by Hermite in 1873, and of that of π by Lindemann in 1882. As it an be shown

that sums, produts, quotients and even rational powers of algebrai integers are themselves algebrai, one of the next

interesting questions that arise is to deide whether 2
√

2
is transendental. Hilbert gave a more general formulation: he

onjetured that if α is an algebrai number di�erent from 0 and 1, and if β is an irrational algebrai number, then the

power αβ
is always transendental. Hilbert thought that this problem was very hard and even believed that (unlike the

Riemann Hypothesis and Fermat's Last Theorem) even the youngest of his generation won't see its solution. However,

the transendene of 2
√

2
was established by A. O. Gelfond as early as 1929, and then in 1934 the general onjeture

was also settled by him and, independently, by Th. Shneider. By taking the natural logarithm we an reformulate

the Gelfond-Shneider theorem as the statement asserting that if α1, α2 are algebrai numbers di�erent from 0 and 1,

there is no irrational number β for whih logα1+β logα2 = 0. Alan Baker reeived the Fields Medal for the following

far-reahing generalisation:

If α1, . . . , αn are algebrai numbers di�erent from 0 and 1 and β1, . . . , βn are algebrai numbers di�erent from 0
suh that

β1 logα1 + · · ·+ βn logαn = 0,

then there exist rational numbers γ1, . . . , γn, not all equal to 0, for whih

γ1 logα1 + · · ·+ γn logαn = 0.

From this theorem one an derive for instane the transendene of the produts eβα
β1

1
. . . αβn

n for arbitrary nonzero

algebrai numbers α1, . . . , αn, β1, . . . , βn, β. The theorem also has important appliations in the theory of diophantine

equations.

• The following interesting problem was put forward by Paul Erd®s and Paul Turán in 1936:

Let k > 2 be an integer and 0 < δ < 1 a real number. Prove that there exists a positive integer N0 (depending on

k and δ), suh that for any N ≥ N0 an arbitrary subset of the set {1, 2, 3, . . . , N} whose ardinality is at least δN

ontains an aritmeti progression of length k.

In other words, if a subset of the set {1, 2, 3, . . . , N} is �not too sparse�, then for N large enough it must ontain

an arithmeti progression of length k. The question is di�ult already for k = 3; in fat, the solution of the problem
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in this speial ase was one of the results for whih K. F. Roth reeived the Fields Medal. (The other one was a

basi theorem from the �eld of diophantine approximation.) But the general ase is muh more di�ult, and the

�rst to takle it was the Hungarian mathematiian Endre Szemerédi, by means of a very ingenious and intriate

ombinatorial onstrution. Then in 1977, with the help of methods from ergodi theory, Furstenberg found a simpler

but less elementary proof. A shortoming of both proofs is, however, that neither of them reveals muh about the

bound N0: Furstenberg only proves its existene, and the estimate obtained by Szemerédi is very high, in ontrast to

the muh �ner bounds obtained by Roth in the ase k = 3. The new proof by Timothy Gowers is more elementary

than that of Furstenberg, less ompliated than that Szemerédi, and gives a muh better bound. It was for this, and

for results obtained in the theory of so-alled Banah spaes, that he obtained the medal.

• Paul Cohen solved the most famous open problem of set theory, going bak to the founding father of the �eld,

Georg Cantor. It was Cantor who �rst gave a rigourous de�nition for the ardinality of a set: aording to him, two

sets have the same ardinality if there exists a one-to-one orrespondene between their elements. In�nite sets always

ontain a proper subset that has the same ardinality: one of the earliest examples for this, pointed out by Cantor

himself, is the ase of the rationals and the integers. It was also Cantor who showed that the set of real numbers has

ardinality stritly greater than that of the rationals, and he onjetured that there is no in�nite set whose ardinality

is stritly larger than that of the rationals but stritly smaller than that of the reals. Kurt Gödel showed in 1939 that

this assumption does not ontradit the universally aepted axioms of set theory due to Zermelo and Frenkel. But

this was not enough to settle the question for it only meant that there exists a mathematial logial model in whih

the axioms of Zermelo and Frenkel are satis�ed and Cantor's onjeture is true. Then in 1961 Cohen onstruted a

model in whih the Zermelo�Frenkel axioms hold but there exists a set of ardinality larger than that of the rationals

and smaller than that of the reals. This theorem is a milestone in the history of siene for it gives the �rst example

for a famous open question that annot be deided within the framework of a given system of axioms. On the other

hand, Cohen used in the onstrution of his logial model a new method alled �foring� whose development opened

up the way for very fruitful further reseah.

• A basi problem in the theory of diophantine equations is to �nd those triples (x, y, z) of rational numbers that
are not all 0 and that satisfy a given homogenous polynomial equation f(x, y, z) = 0. As examples, we may mention

the �Fermat-type� equations xn + yn − zn = 0 or the quadrati equation y2 − xz = 0. The equation f = 0 de�nes an

algebrai urve in the projetive plane (for instane, in the ase of the equation y2 − xz = 0 we get a oni), and the

triples (x, y, z) that we are looking for give rise to points on the urve with rational oordinates. It is ustomary to

assume that the urve is smooth, whih means that one an draw a single tangent line to it in eah of its points. If

the polynomial f has degree one, the rational points are easy to �nd. The quadrati ase is not muh more di�ult:

if there exists a rational point at all, then there are in�nitely many of them, and they an be projeted from a given

point to the projetive line. The ase of degree three belongs to the theory of so-alled ellipti urves: here it may

happen that there are no rational points, or that they are �nite in number but also that there are in�nitely many.

In the latter ase, a basi theorem proven by Mordell in 1930 provides a desription of their struture. It was also

Mordell who �rst speulated about the higher degree ases. Here of ourse one should exlude those urves whih an

be transformed into a urve of degree at most three by a rational hange of oordinates. Of the remaining urves of

degree at most four Mordell onjetured that they always have �nitely many rational points. As this onjeture was

not orroborated by many numerial examples, it aused universal surprise when it was proven by Gerd Faltings in

1983. The proof used di�ult methods from algebrai geometry, but later Faltings (building upon ideas by Paul Vojta

and Enrio Bombieri) gave a seond, more elementary but more omputational proof. In any ase, he found the seond

proof su�iently elementary so that he ould remark in his ustomary sarasti style: Nowadays anyone an prove

Mordell's onjeture.

• One of the most important areas in modern algebra is the theory of groups. A group is a set endowed with a two-

variable assoiative operation (usually alled multipliation) having two important properties: a) there exists a unit

element, i.e. an element e for whih eg = ge = g for any element g of the group; b) any element g has an inverse, i.e. an

element g−1
satisfying gg−1 = g−1g = e. As examples of groups one may onsider the set of integers with respet to the

addition law (but not multipliation!), the set of nonzero rational numbers with respet to multipliation, isometries

of the plane or the spae with respet to the omposition of isometries, or � to give an example of a �nite group �

symmetries of a (�xed) regular polygon or polyhedron, also with respet to omposition. In the study of groups a

basi role is played by so-alled normal subgroups. A subset H of a group G is alled a normal subgroup if it ontains

produts and inverses of any two of its elements and moreover for any g ∈ G and h ∈ H it ontains the element

ghg−1
. In 1963 Walter Feit and John Thompson proved an open onjeture of Burnside formulated several deades

before, whih asserts that any �nite group G whose ardinality is an odd omposite integer ontains a normal subgroup

other than G itself or the one-element subgroup formed by the unit element. This result is of ruial importane in the

lassi�ation of �nite groups for it redues the study of �larger� groups to that of �smaller� building bloks. Thompson

was awarded the Fields Medal for this theorem together with other important results that he obtained in the theory

of �nite groups.

• Our last example omes from the �eld of topology and is intended for those familiar with the rudiments of this

theory. Reall that a d-dimensional topologial manifold is a onneted topologial spae in whih eah point has

an open neighbourhood admitting a homeomorphism (i.e. a bijetion ontinuous in both diretions) onto an open
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subset of Eulidean d-spae. One of the basi problems of topology is the lassi�ation of manifolds. One may try to

lassify them up to homeomorphism but it is at least as interesting to onsider the weaker problem of lassifying them

aording to their homotopy type. Intuitively, two manifolds have the same homotopy type if they an be ontinuously

deformed into eah other. For instane, the disk or any onvex �gure in the plane has the homotopy type of a point

(beause they are ontinuously ontratible). [The preise de�nition is the following: two ontinuous maps f, g : X → Y

are homotopi (denote this by f ∼ g) if there exists a ontinuous map h : X × [0, 1] → Y satisfying h(x, 0) = f(x)
and h(x, 1) = g(x) for any x ∈ X . This being said, two manifolds M and N have the same homotopy type if there

exist ontinuous maps F : M → N and G : N → M with G ◦ F ∼ idM and F ◦ G ∼ idN .℄ The generalised Poinaré

onjeture predits that any ompat manifold having the homotopy type of the d-dimensional sphere Sd
is in fat

homeomorphi to Sd
. It is not very di�ult to verify the ase d = 2 of this onjeture, but the ase d = 3 (the

original onjeture of Poinaré) is still an open problem today. Therefore it may sound surprising that in 1982Mihael

Freedman managed to prove the ase d = 4 of the onjeture; moreover, he was able to lassify all so-alled simply

onneted ompat 4-dimensional manifolds. Among the Fields Medalists the work of Stephen Smale is also related

to the Poinaré onjeture: he reeived the honour for his proof of the onjeture for any manifold of dimension d > 4
admitting a di�erentiable struture. However, the 3-dimensional ase still resists all attempts, so it is no wonder that

in the year 2000 the Clay Foundation listed it among the seven Millennium Problems for whose solution a ash prize

of 1 000 000 dollars is awarded. Therefore if one of the readers happens to solve this 100-year-old problem before the

age of 40, he/she an safely expet to beome both a Fields Medalist and a millionaire.

Added in proof: Life may spoil the best of jokes. After the Hungarian version of this artile was published, G. Per-

elman announed a proof of the Poinaré Conjeture.
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