3. Determine all pairs (m, n) of integers $m, n \geq 3$, such that there exist infinitely many positive integers a for which

$$
\frac{a^{m}+a-1}{a^{n}+a^{2}-1}
$$

is an integer.
Solution by B. A. Rácz. Let $\mathrm{p}(x)=x^{m}+x-1$ and $\mathrm{q}(x)=x^{n}+x^{2}-1$. First we shall prove that if the condition of the problem is satisfied by a pair (m, n) then the denominator as a polynomial is a divisor of the numerator, that is $\mathrm{q}(x) \mid \mathrm{p}(x)$.

Let us divide the polynomial $\mathrm{p}(x)$ by $\mathrm{q}(x)$, that is, let

$$
\mathrm{p}(x)=\mathrm{h}(x) \cdot \mathrm{q}(x)+\mathrm{r}(x)
$$

where either $r(x)$ is zero or the degree of the remainder is smaller than that of the divisor: $\operatorname{deg} \mathrm{r}<\operatorname{deg} \mathrm{q}$. Since the leading coefficient of the divisor is 1 , the quotient and remainder both have integer coefficients.

According to the condition, it is true for infinitely many integers a that

$$
\frac{\mathrm{p}(a)}{\mathrm{q}(a)}=\mathrm{h}(a)+\frac{\mathrm{r}(a)}{\mathrm{q}(a)}
$$

is an integer. It follows from the relation of the degrees that $\frac{\mathrm{r}(a)}{\mathrm{q}(a)} \rightarrow 0$ as $|a| \rightarrow \infty$, and thus the value of this ratio must be 0 for infinitely many integers a. This is also true for the numerator, and if the value of the polynomial is 0 at infinitely many points then it must be identically zero.

Thus the polynomial $\mathrm{r}(x)$ is identically zero, and $\mathrm{q}(x)$ is a divisor of the polynomial $\mathrm{p}(x)$.
Since the divisibility cannot hold if $m<n$, we can assume that $m \geq n$. Then the polynomial $\mathrm{q}(x)$ also divides the polynomial

$$
(x+1) \cdot \mathrm{p}(x)-\mathrm{q}(x)=x^{n}\left(x^{m-n+1}+x^{m-n}-1\right)
$$

Since x^{n} and $x^{n}+x^{2}-1$ are coprime and the second factor is also a polynomial according to the assumption, it follows that

$$
x^{n}+x^{2}-1 \mid x^{m-n+1}+x^{m-n}-1
$$

Let $k=m-n$. Then $k \geq 0, \mathrm{q}(x)=x^{n}+x^{2}-1 \mid x^{k+1}+x^{k}-1$ and it is clear that $k+1 \geq n$.
Since $\mathrm{q}(x)$ is a continuous function and $\mathrm{q}(0)<0<\mathrm{q}(1)$, there exists a number $0<\alpha<1$, such that $\mathrm{q}(\alpha)=0$, that is $\alpha^{n}+\alpha^{2}=1$. Hence it follows from the divisibility $\mathrm{q}(x) \mid x^{k+1}+x^{k}-1$ that $\alpha^{k+1}+\alpha^{k}=1$, and thus

$$
\begin{equation*}
\alpha^{n}+\alpha^{2}=\alpha^{k+1}+\alpha^{k}=1 \tag{*}
\end{equation*}
$$

If $k=1$, the second equality cannot be true for any real α. If $k \geq 2$ then $n \geq 3$ and thus with the condition $k+1 \geq n$ above, we have

$$
k \geq n-1 \geq 2
$$

Since $0<\alpha<1$, it follows that $\alpha^{n} \geq \alpha^{k+1}$ and $\alpha^{2} \geq \alpha^{k}$. With (*), this can happen only if $\alpha^{n}=\alpha^{k+1}$ and $\alpha^{2}=\alpha^{k}$, that is for $n=k+1$ and $2=k$, which makes $m=5$ and $n=3$.

For this number pair, on the other hand, $a^{5}+a-1=\left(a^{3}+a^{2}-1\right)\left(a^{2}-a+1\right)$. If a is a positive integer then $a^{3}+a^{2}-1 \geq 1+1-1>0$, and thus

$$
\frac{a^{5}+a-1}{a^{3}+a^{2}-1}=a^{2}-a+1
$$

which is an integer for every positive integer a.
There is one single pair of numbers satisfying the conditions of the problem, namely the pair $(5,3)$.

