
There are many important and interesting 
hara
teristi
s of the ele
trostati
 �eld, su
h as the spheri
al symmetry

of the �eld of a point 
harge or the theorem whi
h states that outside a homogeneously 
harged spheri
al shell an

ele
trostati
 �eld generated by it is the same as that of a point 
harge having the same overall ele
tri
 
harge, and the

ele
tri
 �eld strength inside the shell is zero. Beyond these well-known features there arose a question in my mind of

whi
h I have not heard or read in any book, neither of the proposal nor of the solution of the problem. This problem

� mainly after having been 
onsidered thoroughly � 
ast a new light on the 
hara
teristi
s of ele
trostati
 �elds (and

also of those �elds that 
an be des
ribed with similar equations, su
h as magnetostati
 and gravitational �elds) for

me.

A problem of averaging

The question I was 
on
erned with was: what result do we get in an arbitrary ele
trostati
 �eld (not ne
essarily

having a spheri
al symmetry) if we average the ele
tri
 �eld strength ve
tor and the ele
tri
 potential on the surfa
e

of an imaginary sphere?

My guess was that the average ele
tri
 �eld ve
tor would be the same as the ele
tri
 �eld ve
tor in the 
entre of

the sphere and the average potential would be the same as the ele
tri
 potential in the 
entre of the sphere. As we

will see, the guess is not 
orre
t in general, but is not too far from the truth and with a slight modi�
ation a true

statement 
an be given.

The `brute for
e' method

Let us 
al
ulate the average of the potential me
hani
ally, that is let us 
all upon the help of the integral 
al
ulus.

(If the Reader is inexperien
ed in this 
hapter of mathemati
s, do not put away this paper just skip this se
tion,

be
ause in the latter se
tions there is also an elementary solution o�ered to this problem!)

Let us �rst take a �eld where there is only one point 
harge and it is in ℓ distan
e of the 
entre of the imaginary

sphere of radius R. Under the `average' of the U potential we mean the quantity of:

(1)(1) U
average

=

∑

i Ui · dfi
∑

i dfi

Interpretation: the surfa
e of the sphere is divided into dfi surfa
e elements (i is an appropriately 
hosen index of the

elements) and the average of the ele
tri
 potentials dete
table on the surfa
e weighted with the size of the surfa
e

elements is 
al
ulated. (We must emphasize here that dfi means the size of a surfa
e element, a s
alar quantity, and

it should not be mixed up with the dire
tional surfa
e element' a ve
tor used in 
al
ulating �uxes).
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Let us get down to 
al
ulation. Take the 
oordinate frame as seen in the �gure. The point 
harge resides on axis

x, and let us take the 
entre of the sphere as the origin. Let us divide the surfa
e of the sphere into belts of width dx.
The �rst step is to determine the size of these surfa
e belts.

df = 2πy · ds = 2πR sinα · dx

sinα
= 2πR · dx.

That is, we got that the size of the spheri
al belts depend only on dx and that makes our further task quite simple.

With the above equation the whole surfa
e of the sphere 
an easily be 
al
ulated:

(2)(2) F =
∑

df = 2πR ·
+R
∑

x=−R

dx = 2πR · 2R = 4πR2.

In the next step let us 
al
ulate the potential in the surfa
e points with x 
o-ordinates.

U =
kQ

r
,
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where

r =

√

(ℓ+ x)
2
+ y2 =

√

(ℓ+ x)
2
+R2 − x2 =

√

ℓ2 + 2ℓx+R2.

Now, we 
an do the integration itself. Sin
e the surfa
e elements with the same distan
e from the point 
harge are

on a thin spheri
al belt, it is sensible to divide the sphere into su
h belts or zones and make the averaging a

ording

to these.

U
average

=
1

F

∫

U · df =
1

4πR2
2Rπ · kQ ·

∫ R

−R

1√
ℓ2 + 2ℓx+R2

dx =(3)

=
kQ

2ℓR

(

|ℓ+R| − |ℓ−R|
)

=
kQ

ℓ
, if ℓ ≥ R,

kQ

R
, if ℓ ≤ R.

We have arrived at a strange formula. Firstly, its form is pe
uliar, sin
e in the �nal formula only one is present of

the two quantities, R and ℓ, and in a symmetri
 way. Se
ondly, the physi
al interpretation is also interesting, be
ause

the same formula des
ribes the potential derived from a homogeneously 
harged spheri
al shell of 
harge Q in distan
e

ℓ. The present problem under investigation is quite di�erent to that, as it appears, but we will see that there is a 
lose


onne
tion between the two (and that 
an be well exploited).

An elementary solution resulting from energeti
 
onsiderations

Now let us think that the so far imaginary (or `virtual') spheri
al shell is an existing (insulator) body whi
h

is 
harged homogeneously with q = 1 total 
harge. What is the intera
tion energy of this homogeneously 
harged

spheri
al shell and a point 
harge of magnitude Q residing in ℓ distan
e from its 
entre?

This energy 
an be determined in two ways. On the one hand, we 
an 
al
ulate the potential derived from the

spheri
al shell in the pla
e where the point 
harge is lo
ated (this 
an easily be done sin
e the 
harge distribution

has a spheri
al symmetry) and multiply it with the magnitude of the point 
harge (Q). The result is well-known, it is
exa
tly the same as the �nal form of equation (3).

But there is another way. In the spheri
al symmetri
 (Coulomb) �eld of the point 
harge Q we 
an 
al
ulate the

potential energy of the homogeneously distributed 
harge of the spheri
al shell. In theory it 
an be done by dividing

the spheri
al shell into small parts in thought, multiplying the quantities of 
harge of the surfa
e elements (df), that
is df/(4πR2), by the potentials resulting from the Q point 
harge at the pla
e of the given surfa
e elements, and

summing up these energies.

he se
ond method is te
hni
ally mu
h more di�
ult than the �rst one. But fortunately we do not have to go

through the 
ompli
ated summing pro
edure sin
e its result is obviously the same as that of the �rst 
al
ulation.

N.B. the quantity resulted by the se
ond method is the average potential on the sphere of radius R originated from


harge Q. Bene�ting from the fa
t that the two 
al
ulations have identi
al results, the average value in question 
an

be determined with an elementary method leaving out the integral 
al
ulus:

U
average

=
kQ

ℓ
, if

ℓ ≥ R,kQ
R,if

ℓ ≤ R. (4) (4)

The average of the ele
tri
 �eld strength ve
tor

The next problem is the averaging of the ele
tri
 �eld ve
tor. On the basis of our foregoing results this 
an be done

in two ways. The �rst method is based on the idea that the �eld ve
tor is in 
lose 
onne
tion with the potential, or

more exa
tly with the rate of its spatial variation. This 
onne
tion 
an be des
ribed in a mathemati
al form: if from

a lo
ation where the ele
tri
 �eld ve
tor is E we move on with a small ∆x displa
ement ve
tor, the 
hange in the

potential will be:

(5)(5) ∆U = −−→
E · −→∆x.

(In the above expression the dot between the two ve
tor quantities means the dot-produ
t of the two ve
tors, and the

negative sign expresses that going in the dire
tion of

−→
E the potential energy de
reases.)
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From all these it follows that if we know the potential in every lo
ation in an ele
trostati
 �eld, we 
an 
al
ulate

the �eld ve
tor with (5) as well. In a given pla
e the 
omponents of the �eld ve
tor 
an be 
al
ulated by moving out

from the given lo
ation in the dire
tion of all three 
o-ordinate axes by ∆s displa
ement and divide the 
hange in the

potential with ∆s. The resulting three quantities are just the �eld ve
tor 
omponents (ex
ept for the sense).

It is not the �eld ve
tor in a point we would like to determine now but rather the �eld ve
tor average. Sin
e the


omponents of the average �eld ve
tor are equal with the average of those 
onsequent 
omponents and these 
an be

expressed by the energy variation of the whole sphere due to displa
ement we 
an a
hieve our aim with equations (4)

and (5). The x 
omponent of the average �eld ve
tor 
an be 
al
ulated by displa
ing the sphere along the axis x by

∆s, 
al
ulating the variation of the average potential in this position and dividing it by ∆s. (We exploit here the fa
t

that the 
hange in the average and the average 
hange in the potential are identi
al.)

Let us see what equation (4) and the above pro
edure tells us of the average �eld ve
tor. If the point 
harge is

inside the sphere, we 
an move the sphere in any dire
tion but the average potential will not 
hange, sin
e it depends

only on R and independent of ℓ. For this reason, the average �eld ve
tor on the surfa
e of the sphere is nil. If the


harge Q is outside the sphere, the situation is a bit more di�
ult. However, in this 
ase we 
an exploit the fa
t that

the average potential is independent of R, so the sphere 
an be point-like as well. But in this 
ase, the potential energy

would be the well known intera
tion energy of two point 
harges and the �eld ve
tor derived by its variation would

be equal with the Coulomb �led in the 
entre of the sphere. Summarizing brie�y: The average of the �eld ve
tor of a

point 
harge on a sphere 
an be 
al
ulated as:

−→
E

average

=
kQ

ℓ2
·
−→
ℓ

ℓ
, if

ℓ > R,0, if ℓ < R. (6) (6)

Superposition

So far we have dealt with one point 
harge and the average of its ele
tri
 �eld on an imaginary sphere. What is the


ase if the ele
trostati
 �eld is generated by several point 
harges (or a 
ontinuous distribution of ele
tri
 
harge)? The

resultant ele
tri
 �eld is the ve
tor sum (superposition) of the �eld of the single point-like 
harges and the average of

the sum is the sum of the average of the single 
onstituent �elds.

In the previous se
tion we saw that � in the 
ase of a point 
harge � the average �eld ve
tor is equal with the

�eld ve
tor dete
table in the 
entre of the sphere. From the superposition prin
iple it follows that the average of the

resultant �eld ve
tor of an arbitrarily 
omplex ele
trostati
 �eld is equal with the ele
tri
 �eld ve
tor in the 
entre of

the sphere generated by the 
harges residing outside of the sphere. The 
harges residing inside the sphere do not add

to the average. This is the small modi�
ation that was not in
luded in the guess-based �rst form of our theorem. It

is interesting that summing a

ording to dire
ted (
onsidered as ve
tor quantities) surfa
e elements (averaging) the

situation is just the opposite: the addition of the 
harges outside of the sphere is nil and the result depends only on

the 
harges inside the sphere, and only these determine the ele
tri
 �ux going through the surfa
e.

A
tion-rea
tion

As a 
on
lusion we show that the result obtained for the average of the ele
tri
 �eld ve
tor 
ould have been

determined more simply without any referen
e of the potential, with a straight method valid for the most general

�elds without any symmetry.

Let us suppose that there is an a
tually existing, evenly 
harged spheri
al surfa
e and its overall 
harge equals the

unit 
harge. In this 
ase, the average of the �eld ve
tor just equals the for
e exerted on the sphere by the whole 
harge

system. This for
e is � a

ording to the a
tion-rea
tion law � the same as the for
e exerted on the 
harge system

by the ele
trostati
 �eld of the sphere with opposite dire
tion. As the sphere is evenly 
harged, its �eld 
orresponds

to the �eld of a point 
harge (outside of the sphere). So the for
e is that of a point 
harge of unit 
harge exerted on

the 
harges outside of the sphere.

Let us apply the a
tion-rea
tion prin
iple again: the resultant for
e exerted on the 
harges outside of the sphere

is equal with the for
e exerted on a point-like unit 
harge in the 
entre of the sphere (apart from the sense), and this

equals the ele
tri
 �eld ve
tor derived from the outer 
harges in the 
entre of the sphere. What is the 
ase with the

inner 
harges? We leave this matter to the reader.

Throughout these 
onsiderations we exploited only the inverse square law of the �eld of a point 
harge and the

superposition prin
iple. The Newtonian gravitational �eld also possesses these 
hara
teristi
s. And with some further


onsiderations the results are also valid in a magneti
 �eld (Although there is no magneti
 pole in Nature, the magneti


�eld 
an be des
ribe as if there were separate magneti
 poles, and the same kind of laws are valid as in ele
trostati
s).

Therefore all of our statements are valid in the same form for the gravitational and magnetostati
 �elds and also

appli
able for all Coulomb-like' ve
tor �elds that may be dis
overed in the future.
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