
1. Given 3n− 1 points in the plane, no three of whi
h are 
ollinear, show that it is possible to sele
t 2n points, su
h

that their 
onvex hull should not be a triangle.

Solution 1. The 
laim is obvious if n = 1. For n > 1, we have to prove that there exist 2n among the given points,

su
h that their 
onvex hull has at least 4 verti
es. If we manage to �nd m ≥ 2n points whose 
onvex hull has at least

4 verti
es, then m − 2n of them 
an be deleted so that the 
onvex hull of the remaining points should still have at

least 4 verti
es.

Thus if the 
onvex hull of the set P of the points is not a triangle then we are done. Therefore we 
an assume that

the 
onvex hull of P is a triangle A1B1C1. Assume that for some i < n, we have already de�ned the points A1, . . . , Ai,

su
h that for all j ≤ i the 
onvex hull of the set P \ {A1, . . . , Aj−1} is the triangle AjB1C1. The set P \ {A1, . . . , Ai}
has at least 2n elements, thus by the previous argument we 
an assume that the 
onvex hull of that set is also a

triangle. Two verti
es of that triangle are 
learly B1 and C1. Let Ai+1 denote the third vertex.

Thus we have shown that if it is not possible to sele
t 2n points whose 
onvex hull is not a triangle, then there

exists a sequen
e A1, A2, . . . , An of points in P , su
h that for all i ≤ n, the 
onvex hull of P \ {A1, . . . , Ai−1} is the

triangle AiB1C1. The point sequen
es B1, B2, . . . , Bn and C1, C2, . . . , Cn 
an be 
onstru
ted in the same way. Among

the 3n points hen
e obtained, there must be two points that 
oin
ide. Without the loss of generality we 
an assume

that Aj = Bk. Then the set

P \ {A1, A2, . . . , An} \ {B1, B2, . . . , Bn} \ {C1}
has at least n − 1 ≥ 1 elements, all of whi
h are interior points of both triangles AjB1C1 and BkA1C1. But that is

impossible, as the two triangles have no 
ommon interior points. This 
ontradi
tion proves the 
laim.

Remarks. 1. It is not hard to show that the number of points in the problem 
annot be de
reased to 3n − 2: Let A1B1C1

be an equilateral triangle with 
entre O, and let A, B, C be the midpoints of OA1, OB1, OC1, respe
tively. Let kA, kB , kC
be 
ir
ular ar
s of radius R that 
onne
t A1 and A, B1 and B, C1 and C, respe
tively. Finally, let the points A2, . . . , An,

B2, . . . , Bn−1, C2, . . . , Cn−1 lie on the ar
s kA, kB , kC . If n ≥ 2 and R is big enough then it is not possible to sele
t 2n points

of the (3n− 2)-element set P = {A1, . . . , An, B1, . . . , Bn−1, C1, . . . , Cn−1}, su
h that their 
onvex hull should not be a triangle.

This is true be
ause if R is big enough then ea
h line AiAj separates the points Bk and Cℓ. Thus if Ai and Aj are both verti
es

of the 
onvex hull of a subset of P , then it may 
ontain at most n− 1 points other than A1, . . . , An, and therefore the subset

itself may 
ontain at most 2n − 1 points. Similar reasoning applies if the 
onvex hull 
ontains at least two of the points Bi or

the points Ci as verti
es. Therefore, the 
onvex hull of every 2n-element subset may only 
ontain one Ai, one Bi and one Ci as

verti
es, and that makes it ne
essarily a triangle.

2. For any real number x denote the smallest integer not smaller than x by ⌈x⌉. It 
an be shown that the 
laim 
an be

improved as follows:

Let n 6= 3. Given ⌈3n/2⌉ − 1 points in the plane, no three of whi
h are 
ollinear, it is possible to sele
t n of them, su
h that

their 
onvex hull is not a triangle.

The two solutions below prove this stronger statement. Note that the 
ondition makes sense for positive integer n only, and

that for n ≤ 2 the 
laim obviously holds. Thus, in what follows, n is greater than 3. If n is odd, then a minor adjustment of the

previous 
ounterexample shows that the 
laim fails to hold if the number of points is redu
ed to ⌈3n/2⌉ − 2.

Solution 2. Assume that P is a set of at least ⌈3n/2⌉ − 1 points that does not 
ontain n points whose 
onvex

hull is not a triangle. Let the 
onvex hull of P be the triangle ABC, and let A1 = A. As in Solution 1, 
onstru
t the

sequen
e A1, A2, . . . , A⌈n/2⌉ su
h that for all i ≤ ⌈n/2⌉, the 
onvex hull of P \ {A1, . . . , Ai−1} is the triangle AiBC.
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Consider the points A2, . . . , A⌈n/2⌉ in 
ounter
lo
kwise order as seen from the point A. Let X and Y denote the

�rst and last of them, respe
tively. Let X ′
and Y ′

be the interse
tions of lines AX and AY with the segment BC. We


an assume, without loss of generality, that the order of points on the line BC is B, X ′
, Y ′

, C. One of the triangles
BCX and BCY 
ontains the other one. The smaller one of the two triangles, whi
h is 
overed by the union of triangles

BY Y ′
and CXX ′

, 
ontains the set P ′ = P \
{

A1, A2, . . . , A⌈n/2⌉, B, C
}

. P ′
has at least n− 3 elements. We 
an 
learly

assume that at least half of these points lie inside the triangle BY Y ′
(�gure). Sele
t

⌈

(n − 3)/2
⌉

ones out of these
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points and denote this set by P ′′
. Finally, let Q = P ′′ ∪

{

A1, A2, . . . , A⌈n/2⌉, B
}

. Q has

⌈

(n − 3)/2⌉+ ⌈n/2
⌉

+ 1 = n
elements, ea
h of whi
h lies either inside the triangle AY ′B or on its boundary. Thus the points A, Y , B lie on the


onvex hull of Q. However, the 
onvex hull of Q must also 
ontain at least one point of the set P ′′
, 
ontradi
ting the

assumption that P does not 
ontain n points whose 
onvex hull is not a triangle.

Solution 3 (by G. Lippner). As explained in Solution 1, we 
an assume that the 
onvex hull of the points is a

triangle ABC. Consider the points lying in the interior of this triangle ABC. Colour the segments 
onne
ting any

two of the given points red, blue or green, depending on whi
h side of the triangle they do not interse
t: AB, BC, or
CA, respe
tively (on the �gure P, K, Z). Let R, B, G, denote the sets of points in
ident to red, blue, green segments,

respe
tively. Sin
e n ≥ 4, there must be at least 2 points in the interior of triangle ABC, therefore the set R ∪B ∪G
is the same as the set of points inside the triangle, and thus it has ⌈3n/2⌉ − 4 elements. We show that one of the sets

R, B, G must have at least n− 2 elements.

Let us represent the sets on a Venn diagram. The letters denote the number of elements in the 
orresponding

subsets.

If, say, a 6= 0, then there is a point in the interior of the triangle that is 
onne
ted to ea
h of the other points with

a red segment. Then

|P | = ⌈3n/2⌉ − 4 ≥ n− 2,

as n ≥ 4. Therefore, we 
an assume that a = b = c = 0. Hen
e

|R ∪B ∪G| = x+ y + z + v.

Now if ea
h of

|R| = y + z + v, |B| = z + x+ v and |G| = x+ y + v

were smaller than n− 2, then this would imply the inequality

3n− 8 ≤ 2
(

⌈3n/2⌉ − 4
)

= 2(x+ y + z + v) ≤ |R|+ |B|+ |G| ≤ 3(n− 3) = 3n− 9,

a 
ontradi
tion.

Therefore, it is true that one of the sets has at least n− 2 elements. Assume that |R| ≥ n− 2 ≥ 2. Consider the set
R′ = R∪ {A,B}. R′

has at least n elements, and its 
onvex hull 
ontains the verti
es A and B. Let D ∈ R, and let E
be a point in R for whi
h the segment DE is red. As the line DE does not interse
t the segment AB, E 
annot be in

the interior of triangle ABD. Hen
e the 
onvex hull of R′

annot be a triangle. Now it is 
learly possible to sele
t a

subset of at least n ≥ 4 elements from R′
, su
h that their 
onvex hull is not a triangle either.

2. Let k ≥ 3 be an integer, and n >

(

k

3

)

. Prove that if ai, bi, ci (1 ≤ i ≤ n) are 3n distin
t real numbers then

there are at least k + 1 di�erent numbers among the numbers ai + bi, ai + ci, bi + ci. Show that the statement is not

ne
essarily true for n =

(

k

3

)

.

Solution 1. Assume that the statement is not true, that is, there are at most k di�erent numbers among the sums

ai+bi, ai+ci, bi+ci. Let T denote the set of these numbers. It is that for every 1 ≤ i ≤ n, the numbers ai+bi, ai+ci,
bi+ ci are pairwise di�erent, and thus form a 3-element subset of T . Furthermore, if ai+ bi = x, ai+ ci = y, bi+ ci = z
then ai = (x+ y − z)/2, bi = (x+ z − y)/2, ci = (y+ z − x)/2, and thus, the set {x, y, z} uniquely determines the set

{ai, bi, ci}. As
(|T |

3

)

≤
(

k

3

)

< n,

there exist indi
es 1 ≤ i < j ≤ n, su
h that {ai, bi, ci} = {aj, bj , cj}, 
ontradi
ting to the 
ondition.

For the se
ond part, 
onsider the set T = {t1, t2, . . . , tk}, where ti = 4i. Let n =

(

k

3

)

, and let T1, T2, . . . , Tn denote

the 3-element subsets of T . If Ti = {4u, 4v, 4w}, where 1 ≤ u < v < w ≤ k are integers, then let

ai = (4u + 4v − 4w)/2, bi = (4u + 4w − 4v)/2 and ci = (4v + 4w − 4u)/2.
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Clearly ai + bi, ai + ci, bi + ci ∈ T . Hen
e it is enough to show that the numbers ai, bi, ci (1 ≤ i ≤ n) are all di�erent.
ai = bj or ai = cj are not possible for any i, j, as the numbers ai are all negative, whereas bj and cj are all positive.

bi = cj is not possible either, as ea
h bi lies in some interval (22s−2, 22s−1), while ea
h ci lies in an interval of the form

(22s−1, 22s) where 3 ≤ s ≤ k is an integer.

Now let Ti = {4u, 4v, 4w} and Tj = {4x, 4y, 4z}, where 1 ≤ u < v < w ≤ k and 1 ≤ x < y < z ≤ k are integers.

Suppose that ci = cj . Then
4v + 4w − 4u = 4y + 4z − 4x.

As 4w < 4v+4w−4u < 4w+1
, and 4z < 4y+4z−4x < 4z+1

, this 
an happen only if w = z, and thus 4v−4u = 4y−4x.
Here 4v−1 < 4v − 4u < 4v and 4y−1 < 4y − 4x < 4y, and therefore equality 
an hold only if v = y and then ne
essarily

u = x and i = j. Thus the numbers ci are all di�erent. A similar reasoning shows that the numbers ai and the numbers

bi are all di�erent. That 
ompletes the proof.

Solution 2. This is a di�erent proof for the �rst part of the problem, by D. Kiss. Assume again, to the 
ontrary,

that there are at most k di�erent numbers among the 3n sums. Then there is a sum that o

urs at least

3n

k
>

(

k − 1

2

)

times. Let a denote that sum. If two of the sums ai + bi, bi + ci and ai + ci were equal to a for some i, then there

would be two equal numbers among ai, bi and ci. Thus we 
an assume that for all 1 ≤ i ≤
(

k − 1

2

)

+ 1, exa
tly one

of the sums ai + bi, bi + ci and ai + ci equals a. Now the remaining 2

((

k − 1

2

)

+ 1

)

sums 
an assume only k − 1

di�erent values. Therefore, there is a value, some b, that o

urs at least

2

((

k − 1

2

)

+ 1

)

/

(k − 1) > k − 2

times. By the previous argument, we 
an assume that for all 1 ≤ i ≤ k − 1, one of the sums ai + bi, bi + ci, ai + ci is
a and another one is b. The k − 1 sums still remaining 
an only assume k − 2 di�erent values, and hen
e two of them

are equal. But then the 
orresponding numbers ai, bi, ci are also equal. This 
ontradi
tion proves the statement.

In what follows there are further 
onstru
tions for the se
ond part of the problem.

Solution 3. Consider the set T = {t1, t2, . . . , tk}, where ti = 3i. Let {x, y, z} and {u, v, w} be two 3-element

subsets of the set {1, 2, . . . , k}. As in Solution 1, it is enough to show that if

3x + 3y − 3z

2
=

3u + 3v − 3w

2
,

then the two subsets are ne
essarily equal, and z = w. It follows from the equality that

3x + 3y + 3w = 3u + 3v + 3z = A.

If A is written in base-3 notation, then its non-zero digits 
ontain either three 1's, or one 1 and one 2, as x = y = w
is not possible. The base-3 notation of a number is unique, thus in the �rst 
ase, {x, y, w} and {u, v, z} are the same

3-element subsets of the set {1, 2, . . . , k}. Sin
e x, y 6= z, this yields w = z and hen
e {x, y} = {u, v}, indeed. In the

se
ond 
ase we have that {x, y, w} and {u, v, z} are identi
al 2-element subsets of {1, 2, . . . , k}. As x 6= y, this subset
must be identi
al to the set {x, y} and this would imply z ∈ {x, y} whi
h is impossible.

Solution 4. As also suggested by the above solutions, it is enough to show that for every positive integer k, there
exists a set Tk = {t1, t2, . . . , tk} for whi
h tx+ty+tz = tu+tv+tw is true if and only if the numbers x, y, z are identi
al

to the numbers u, v, w in some order. Then it is easy to show that the 3

(

k

3

)

numbers of the form (tx + ty − tz)/2

(where {x, y, z} is an arbitrary 3-element subset of the set {1, 2, . . . , k}) are all di�erent.
If k = 1, then t1 = 1 is obviously a good 
hoi
e. It is enough to show that there exists an in�nite sequen
e

t1, t2, . . . , ti, . . . , su
h that for all i ≥ 2, ti 
annot be expressed in the form r1t1 + · · ·+ ri−1ti−1, where r1, . . . , ri−1 are

rational numbers. Indeed, assuming that su
h a sequen
e exists, 
onsider the set Tk, and suppose that tx + ty + tz =
tu + tv + tw for some 1 ≤ x, y, z, u, v, w ≤ k. Let i be the greatest one of the indi
es x, y, z, u, v, w. Now if ti does
not o

ur the same number of times on both sides of the equality, then rearrangement yields an equality of the form

ti = r1t1 + · · ·+ ri−1ti−1. Thus i o

urs the same numbers of times among x, y, z as among u, v, w. Can
elling the

terms equal to ti on both sides, and repeating the above pro
edure, one �nally 
on
ludes that the numbers x, y, z
indeed 
oin
ide with u, v, w in some order.

Assume, therefore, that k > 1 and the numbers t1, . . . , tk−1 have already been determined a

ording to the above

requirement. Then the in�nite set of numbers that 
an be expressed in the form r1t1 + · · ·+ rk−1tk−1 is denumerable,

while the set of all real numbers is not. Thus, there exists a real number tk that 
annot be expressed in the form

r1t1 + · · ·+ rk−1tk−1. Hen
e the existen
e of a sequen
e of the required property follows dire
tly from the prin
iple of

mathemati
al indu
tion.
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Remark. 1. The last solution uses a non-
onstru
tive method to prove the existen
e of an appropriate sequen
e t1, t2, . . . , ti, . . . .
It 
an be shown that the 
hoi
e ti =

√
pi, for example, yields a suitable sequen
e. (pi denotes the i-th positive prime number.)

The proof, however, is beyond the s
ope of this arti
le.

2. As observed by A. T. Ko
sis, the problem 
an be generalized as follows. Let k ≥ t ≥ 3 be integers and n >

(

k

t

)

.

If ai1, ai2, . . . , ait (1 ≤ i ≤ n) are tn di�erent real numbers then there are at least k + 1 di�erent numbers among the sums

t
∑

j=1

aij − aik (1 ≤ i ≤ n, 1 ≤ k ≤ t), but this is not ne
essarily so if n =

(

k

t

)

. The proof is left to the reader as an exer
ise as

it does not require any new idea.

3. The story is entirely di�erent if we ask about two term sums. It is 
lear that if k ≥ 3 is an integer, n >

(

k

3

)

, and ai, bi,

ci, di (1 ≤ i ≤ n) are 4n di�erent real numbers, then there are at least k+1 di�erent numbers among the sums ai + bi, ai + ci,

ai + di, bi + ci, bi + di, ci + di. Surprisingly enough this 
annot be improved signi�
antly. You 
an think about the following

problem: for every integer k ≥ 3, there exist 4

(

k

3

)

di�erent real numbers ai, bi, ci, di

(

1 ≤ i ≤
(

k

3

))

, su
h that there are at

most 2k di�erent numbers among the sums ai + bi, ai + ci, ai + di, bi + ci, bi + di, ci + di.

3. In a square latti
e, 
onsider any triangle of minimum area that is similar to a given triangle. Prove that the


entre of its 
ir
ums
ribed 
ir
le is not a latti
e point.

Solution 1 (by B. Geren
sér). Consider a latti
e triangle whose 
ir
um
entre is also a latti
e point. We 
an

assume, without loss of generality, that one vertex (A) is the origin. Let the 
oordinates of the other two verti
es be

B = (a, b) and C = (c, d), and let the 
ir
um
entre be O = (x, y).

From the equality of the segments OA and OB, the Pythagorean theorem yields x2 + y2 = (a− x)
2
+ (b − y)

2
.

Hen
e a2 + b2 is even, and thus so are a+ b and a− b. By a similar argument, c+ d and c− d are also even numbers.

Consider now the latti
e triangle A1B1C1, where

A1 = A, B1 =

(

a+ b

2
,
a− b

2

)

and C1 =

(

c+ d

2
,
c− d

2

)

.

In this triangle,

A1B1
2 =

(

a+ b

2

)2

+

(

a− b

2

)2

=
a2 + b2

2
=

AB2

2
,

A1C1
2 =

(

c+ d

2

)2

+

(

c− d

2

)2

=
c2 + d2

2
=

AC2

2

and

B1C1
2 =

(

a+ b− c− d

2

)2

+

(

a− b− c+ d

2

)2

=
(a− c)

2
+ (b− d)

2

2
=

BC2

2
.

Hen
e the lengths of the sides of the triangle A1B1C1 are

1√
2
times the 
orresponding sides of the triangle ABC, and

thus we have found a latti
e triangle similar to the triangle ABC, but of smaller area. This proves the statement.

Solution 2. Assume that the 
ir
um
entre O of a latti
e triangle H is also a latti
e point. Let (x, y) be the


oordinates of one of the side ve
tors, and let (a, b) and (c, d) be the 
oordinates of the position ve
tors of the

endpoints of that side. Then a, b, c, d, x, y are integers, and from the Pythagorean theorem,

x2 + y2 = (a− c)
2
+ (b− d)

2
= (a2 + b2) + (c2 + d2)− 2(ac+ bd).

As a2 + b2 = c2 + d2 (the square of the radius of the 
ir
ums
ribed 
ir
le), x2 + y2 and thus also (x+ y)2 is an even

number. It follows that x+ y and x− y are also even.

By rotating the ve
tor (x, y) through an angle of 45◦ about the origin in the positive dire
tion, we get the ve
tor

(

x− y√
2

,
x+ y√

2

)

. An enlargement of s
ale fa
tor

1√
2
yields the ve
tor

(

x− y

2
,
x+ y

2

)

whi
h is a ve
tor of integer


oordinates.

Thus we have shown that by a rotation through 45◦ and an enlargement of s
ale fa
tor

1√
2
, H is mapped onto a

similar but smaller triangle. This proves the statement.

Remark. The diagonals drawn from one vertex of a 
y
li
 polygon divide the polygon into triangles. As all these triangles

have a 
ommon 
ir
um
entre, the statement of the problem is also valid for any 
y
li
 polygon not just a triangle.
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