
1. Given 3n− 1 points in the plane, no three of whih are ollinear, show that it is possible to selet 2n points, suh

that their onvex hull should not be a triangle.

Solution 1. The laim is obvious if n = 1. For n > 1, we have to prove that there exist 2n among the given points,

suh that their onvex hull has at least 4 verties. If we manage to �nd m ≥ 2n points whose onvex hull has at least

4 verties, then m − 2n of them an be deleted so that the onvex hull of the remaining points should still have at

least 4 verties.

Thus if the onvex hull of the set P of the points is not a triangle then we are done. Therefore we an assume that

the onvex hull of P is a triangle A1B1C1. Assume that for some i < n, we have already de�ned the points A1, . . . , Ai,

suh that for all j ≤ i the onvex hull of the set P \ {A1, . . . , Aj−1} is the triangle AjB1C1. The set P \ {A1, . . . , Ai}
has at least 2n elements, thus by the previous argument we an assume that the onvex hull of that set is also a

triangle. Two verties of that triangle are learly B1 and C1. Let Ai+1 denote the third vertex.

Thus we have shown that if it is not possible to selet 2n points whose onvex hull is not a triangle, then there

exists a sequene A1, A2, . . . , An of points in P , suh that for all i ≤ n, the onvex hull of P \ {A1, . . . , Ai−1} is the

triangle AiB1C1. The point sequenes B1, B2, . . . , Bn and C1, C2, . . . , Cn an be onstruted in the same way. Among

the 3n points hene obtained, there must be two points that oinide. Without the loss of generality we an assume

that Aj = Bk. Then the set

P \ {A1, A2, . . . , An} \ {B1, B2, . . . , Bn} \ {C1}
has at least n − 1 ≥ 1 elements, all of whih are interior points of both triangles AjB1C1 and BkA1C1. But that is

impossible, as the two triangles have no ommon interior points. This ontradition proves the laim.

Remarks. 1. It is not hard to show that the number of points in the problem annot be dereased to 3n − 2: Let A1B1C1

be an equilateral triangle with entre O, and let A, B, C be the midpoints of OA1, OB1, OC1, respetively. Let kA, kB , kC
be irular ars of radius R that onnet A1 and A, B1 and B, C1 and C, respetively. Finally, let the points A2, . . . , An,

B2, . . . , Bn−1, C2, . . . , Cn−1 lie on the ars kA, kB , kC . If n ≥ 2 and R is big enough then it is not possible to selet 2n points

of the (3n− 2)-element set P = {A1, . . . , An, B1, . . . , Bn−1, C1, . . . , Cn−1}, suh that their onvex hull should not be a triangle.

This is true beause if R is big enough then eah line AiAj separates the points Bk and Cℓ. Thus if Ai and Aj are both verties

of the onvex hull of a subset of P , then it may ontain at most n− 1 points other than A1, . . . , An, and therefore the subset

itself may ontain at most 2n − 1 points. Similar reasoning applies if the onvex hull ontains at least two of the points Bi or

the points Ci as verties. Therefore, the onvex hull of every 2n-element subset may only ontain one Ai, one Bi and one Ci as

verties, and that makes it neessarily a triangle.

2. For any real number x denote the smallest integer not smaller than x by ⌈x⌉. It an be shown that the laim an be

improved as follows:

Let n 6= 3. Given ⌈3n/2⌉ − 1 points in the plane, no three of whih are ollinear, it is possible to selet n of them, suh that

their onvex hull is not a triangle.

The two solutions below prove this stronger statement. Note that the ondition makes sense for positive integer n only, and

that for n ≤ 2 the laim obviously holds. Thus, in what follows, n is greater than 3. If n is odd, then a minor adjustment of the

previous ounterexample shows that the laim fails to hold if the number of points is redued to ⌈3n/2⌉ − 2.

Solution 2. Assume that P is a set of at least ⌈3n/2⌉ − 1 points that does not ontain n points whose onvex

hull is not a triangle. Let the onvex hull of P be the triangle ABC, and let A1 = A. As in Solution 1, onstrut the

sequene A1, A2, . . . , A⌈n/2⌉ suh that for all i ≤ ⌈n/2⌉, the onvex hull of P \ {A1, . . . , Ai−1} is the triangle AiBC.
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Consider the points A2, . . . , A⌈n/2⌉ in ounterlokwise order as seen from the point A. Let X and Y denote the

�rst and last of them, respetively. Let X ′
and Y ′

be the intersetions of lines AX and AY with the segment BC. We

an assume, without loss of generality, that the order of points on the line BC is B, X ′
, Y ′

, C. One of the triangles
BCX and BCY ontains the other one. The smaller one of the two triangles, whih is overed by the union of triangles

BY Y ′
and CXX ′

, ontains the set P ′ = P \
{

A1, A2, . . . , A⌈n/2⌉, B, C
}

. P ′
has at least n− 3 elements. We an learly

assume that at least half of these points lie inside the triangle BY Y ′
(�gure). Selet

⌈

(n − 3)/2
⌉

ones out of these

2



points and denote this set by P ′′
. Finally, let Q = P ′′ ∪

{

A1, A2, . . . , A⌈n/2⌉, B
}

. Q has

⌈

(n − 3)/2⌉+ ⌈n/2
⌉

+ 1 = n
elements, eah of whih lies either inside the triangle AY ′B or on its boundary. Thus the points A, Y , B lie on the

onvex hull of Q. However, the onvex hull of Q must also ontain at least one point of the set P ′′
, ontraditing the

assumption that P does not ontain n points whose onvex hull is not a triangle.

Solution 3 (by G. Lippner). As explained in Solution 1, we an assume that the onvex hull of the points is a

triangle ABC. Consider the points lying in the interior of this triangle ABC. Colour the segments onneting any

two of the given points red, blue or green, depending on whih side of the triangle they do not interset: AB, BC, or
CA, respetively (on the �gure P, K, Z). Let R, B, G, denote the sets of points inident to red, blue, green segments,

respetively. Sine n ≥ 4, there must be at least 2 points in the interior of triangle ABC, therefore the set R ∪B ∪G
is the same as the set of points inside the triangle, and thus it has ⌈3n/2⌉ − 4 elements. We show that one of the sets

R, B, G must have at least n− 2 elements.

Let us represent the sets on a Venn diagram. The letters denote the number of elements in the orresponding

subsets.

If, say, a 6= 0, then there is a point in the interior of the triangle that is onneted to eah of the other points with

a red segment. Then

|P | = ⌈3n/2⌉ − 4 ≥ n− 2,

as n ≥ 4. Therefore, we an assume that a = b = c = 0. Hene

|R ∪B ∪G| = x+ y + z + v.

Now if eah of

|R| = y + z + v, |B| = z + x+ v and |G| = x+ y + v

were smaller than n− 2, then this would imply the inequality

3n− 8 ≤ 2
(

⌈3n/2⌉ − 4
)

= 2(x+ y + z + v) ≤ |R|+ |B|+ |G| ≤ 3(n− 3) = 3n− 9,

a ontradition.

Therefore, it is true that one of the sets has at least n− 2 elements. Assume that |R| ≥ n− 2 ≥ 2. Consider the set
R′ = R∪ {A,B}. R′

has at least n elements, and its onvex hull ontains the verties A and B. Let D ∈ R, and let E
be a point in R for whih the segment DE is red. As the line DE does not interset the segment AB, E annot be in

the interior of triangle ABD. Hene the onvex hull of R′
annot be a triangle. Now it is learly possible to selet a

subset of at least n ≥ 4 elements from R′
, suh that their onvex hull is not a triangle either.

2. Let k ≥ 3 be an integer, and n >

(

k

3

)

. Prove that if ai, bi, ci (1 ≤ i ≤ n) are 3n distint real numbers then

there are at least k + 1 di�erent numbers among the numbers ai + bi, ai + ci, bi + ci. Show that the statement is not

neessarily true for n =

(

k

3

)

.

Solution 1. Assume that the statement is not true, that is, there are at most k di�erent numbers among the sums

ai+bi, ai+ci, bi+ci. Let T denote the set of these numbers. It is that for every 1 ≤ i ≤ n, the numbers ai+bi, ai+ci,
bi+ ci are pairwise di�erent, and thus form a 3-element subset of T . Furthermore, if ai+ bi = x, ai+ ci = y, bi+ ci = z
then ai = (x+ y − z)/2, bi = (x+ z − y)/2, ci = (y+ z − x)/2, and thus, the set {x, y, z} uniquely determines the set

{ai, bi, ci}. As
(|T |

3

)

≤
(

k

3

)

< n,

there exist indies 1 ≤ i < j ≤ n, suh that {ai, bi, ci} = {aj, bj , cj}, ontraditing to the ondition.

For the seond part, onsider the set T = {t1, t2, . . . , tk}, where ti = 4i. Let n =

(

k

3

)

, and let T1, T2, . . . , Tn denote

the 3-element subsets of T . If Ti = {4u, 4v, 4w}, where 1 ≤ u < v < w ≤ k are integers, then let

ai = (4u + 4v − 4w)/2, bi = (4u + 4w − 4v)/2 and ci = (4v + 4w − 4u)/2.
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Clearly ai + bi, ai + ci, bi + ci ∈ T . Hene it is enough to show that the numbers ai, bi, ci (1 ≤ i ≤ n) are all di�erent.
ai = bj or ai = cj are not possible for any i, j, as the numbers ai are all negative, whereas bj and cj are all positive.

bi = cj is not possible either, as eah bi lies in some interval (22s−2, 22s−1), while eah ci lies in an interval of the form

(22s−1, 22s) where 3 ≤ s ≤ k is an integer.

Now let Ti = {4u, 4v, 4w} and Tj = {4x, 4y, 4z}, where 1 ≤ u < v < w ≤ k and 1 ≤ x < y < z ≤ k are integers.

Suppose that ci = cj . Then
4v + 4w − 4u = 4y + 4z − 4x.

As 4w < 4v+4w−4u < 4w+1
, and 4z < 4y+4z−4x < 4z+1

, this an happen only if w = z, and thus 4v−4u = 4y−4x.
Here 4v−1 < 4v − 4u < 4v and 4y−1 < 4y − 4x < 4y, and therefore equality an hold only if v = y and then neessarily

u = x and i = j. Thus the numbers ci are all di�erent. A similar reasoning shows that the numbers ai and the numbers

bi are all di�erent. That ompletes the proof.

Solution 2. This is a di�erent proof for the �rst part of the problem, by D. Kiss. Assume again, to the ontrary,

that there are at most k di�erent numbers among the 3n sums. Then there is a sum that ours at least

3n

k
>

(

k − 1

2

)

times. Let a denote that sum. If two of the sums ai + bi, bi + ci and ai + ci were equal to a for some i, then there

would be two equal numbers among ai, bi and ci. Thus we an assume that for all 1 ≤ i ≤
(

k − 1

2

)

+ 1, exatly one

of the sums ai + bi, bi + ci and ai + ci equals a. Now the remaining 2

((

k − 1

2

)

+ 1

)

sums an assume only k − 1

di�erent values. Therefore, there is a value, some b, that ours at least

2

((

k − 1

2

)

+ 1

)

/

(k − 1) > k − 2

times. By the previous argument, we an assume that for all 1 ≤ i ≤ k − 1, one of the sums ai + bi, bi + ci, ai + ci is
a and another one is b. The k − 1 sums still remaining an only assume k − 2 di�erent values, and hene two of them

are equal. But then the orresponding numbers ai, bi, ci are also equal. This ontradition proves the statement.

In what follows there are further onstrutions for the seond part of the problem.

Solution 3. Consider the set T = {t1, t2, . . . , tk}, where ti = 3i. Let {x, y, z} and {u, v, w} be two 3-element

subsets of the set {1, 2, . . . , k}. As in Solution 1, it is enough to show that if

3x + 3y − 3z

2
=

3u + 3v − 3w

2
,

then the two subsets are neessarily equal, and z = w. It follows from the equality that

3x + 3y + 3w = 3u + 3v + 3z = A.

If A is written in base-3 notation, then its non-zero digits ontain either three 1's, or one 1 and one 2, as x = y = w
is not possible. The base-3 notation of a number is unique, thus in the �rst ase, {x, y, w} and {u, v, z} are the same

3-element subsets of the set {1, 2, . . . , k}. Sine x, y 6= z, this yields w = z and hene {x, y} = {u, v}, indeed. In the

seond ase we have that {x, y, w} and {u, v, z} are idential 2-element subsets of {1, 2, . . . , k}. As x 6= y, this subset
must be idential to the set {x, y} and this would imply z ∈ {x, y} whih is impossible.

Solution 4. As also suggested by the above solutions, it is enough to show that for every positive integer k, there
exists a set Tk = {t1, t2, . . . , tk} for whih tx+ty+tz = tu+tv+tw is true if and only if the numbers x, y, z are idential

to the numbers u, v, w in some order. Then it is easy to show that the 3

(

k

3

)

numbers of the form (tx + ty − tz)/2

(where {x, y, z} is an arbitrary 3-element subset of the set {1, 2, . . . , k}) are all di�erent.
If k = 1, then t1 = 1 is obviously a good hoie. It is enough to show that there exists an in�nite sequene

t1, t2, . . . , ti, . . . , suh that for all i ≥ 2, ti annot be expressed in the form r1t1 + · · ·+ ri−1ti−1, where r1, . . . , ri−1 are

rational numbers. Indeed, assuming that suh a sequene exists, onsider the set Tk, and suppose that tx + ty + tz =
tu + tv + tw for some 1 ≤ x, y, z, u, v, w ≤ k. Let i be the greatest one of the indies x, y, z, u, v, w. Now if ti does
not our the same number of times on both sides of the equality, then rearrangement yields an equality of the form

ti = r1t1 + · · ·+ ri−1ti−1. Thus i ours the same numbers of times among x, y, z as among u, v, w. Canelling the

terms equal to ti on both sides, and repeating the above proedure, one �nally onludes that the numbers x, y, z
indeed oinide with u, v, w in some order.

Assume, therefore, that k > 1 and the numbers t1, . . . , tk−1 have already been determined aording to the above

requirement. Then the in�nite set of numbers that an be expressed in the form r1t1 + · · ·+ rk−1tk−1 is denumerable,

while the set of all real numbers is not. Thus, there exists a real number tk that annot be expressed in the form

r1t1 + · · ·+ rk−1tk−1. Hene the existene of a sequene of the required property follows diretly from the priniple of

mathematial indution.
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Remark. 1. The last solution uses a non-onstrutive method to prove the existene of an appropriate sequene t1, t2, . . . , ti, . . . .
It an be shown that the hoie ti =

√
pi, for example, yields a suitable sequene. (pi denotes the i-th positive prime number.)

The proof, however, is beyond the sope of this artile.

2. As observed by A. T. Kosis, the problem an be generalized as follows. Let k ≥ t ≥ 3 be integers and n >

(

k

t

)

.

If ai1, ai2, . . . , ait (1 ≤ i ≤ n) are tn di�erent real numbers then there are at least k + 1 di�erent numbers among the sums

t
∑

j=1

aij − aik (1 ≤ i ≤ n, 1 ≤ k ≤ t), but this is not neessarily so if n =

(

k

t

)

. The proof is left to the reader as an exerise as

it does not require any new idea.

3. The story is entirely di�erent if we ask about two term sums. It is lear that if k ≥ 3 is an integer, n >

(

k

3

)

, and ai, bi,

ci, di (1 ≤ i ≤ n) are 4n di�erent real numbers, then there are at least k+1 di�erent numbers among the sums ai + bi, ai + ci,

ai + di, bi + ci, bi + di, ci + di. Surprisingly enough this annot be improved signi�antly. You an think about the following

problem: for every integer k ≥ 3, there exist 4

(

k

3

)

di�erent real numbers ai, bi, ci, di

(

1 ≤ i ≤
(

k

3

))

, suh that there are at

most 2k di�erent numbers among the sums ai + bi, ai + ci, ai + di, bi + ci, bi + di, ci + di.

3. In a square lattie, onsider any triangle of minimum area that is similar to a given triangle. Prove that the

entre of its irumsribed irle is not a lattie point.

Solution 1 (by B. Gerensér). Consider a lattie triangle whose irumentre is also a lattie point. We an

assume, without loss of generality, that one vertex (A) is the origin. Let the oordinates of the other two verties be

B = (a, b) and C = (c, d), and let the irumentre be O = (x, y).

From the equality of the segments OA and OB, the Pythagorean theorem yields x2 + y2 = (a− x)
2
+ (b − y)

2
.

Hene a2 + b2 is even, and thus so are a+ b and a− b. By a similar argument, c+ d and c− d are also even numbers.

Consider now the lattie triangle A1B1C1, where

A1 = A, B1 =

(

a+ b

2
,
a− b

2

)

and C1 =

(

c+ d

2
,
c− d

2

)

.

In this triangle,

A1B1
2 =

(

a+ b

2

)2

+

(

a− b

2

)2

=
a2 + b2

2
=

AB2

2
,

A1C1
2 =

(

c+ d

2

)2

+

(

c− d

2

)2

=
c2 + d2

2
=

AC2

2

and

B1C1
2 =

(

a+ b− c− d

2

)2

+

(

a− b− c+ d

2

)2

=
(a− c)

2
+ (b− d)

2

2
=

BC2

2
.

Hene the lengths of the sides of the triangle A1B1C1 are

1√
2
times the orresponding sides of the triangle ABC, and

thus we have found a lattie triangle similar to the triangle ABC, but of smaller area. This proves the statement.

Solution 2. Assume that the irumentre O of a lattie triangle H is also a lattie point. Let (x, y) be the

oordinates of one of the side vetors, and let (a, b) and (c, d) be the oordinates of the position vetors of the

endpoints of that side. Then a, b, c, d, x, y are integers, and from the Pythagorean theorem,

x2 + y2 = (a− c)
2
+ (b− d)

2
= (a2 + b2) + (c2 + d2)− 2(ac+ bd).

As a2 + b2 = c2 + d2 (the square of the radius of the irumsribed irle), x2 + y2 and thus also (x+ y)2 is an even

number. It follows that x+ y and x− y are also even.

By rotating the vetor (x, y) through an angle of 45◦ about the origin in the positive diretion, we get the vetor

(

x− y√
2

,
x+ y√

2

)

. An enlargement of sale fator

1√
2
yields the vetor

(

x− y

2
,
x+ y

2

)

whih is a vetor of integer

oordinates.

Thus we have shown that by a rotation through 45◦ and an enlargement of sale fator

1√
2
, H is mapped onto a

similar but smaller triangle. This proves the statement.

Remark. The diagonals drawn from one vertex of a yli polygon divide the polygon into triangles. As all these triangles

have a ommon irumentre, the statement of the problem is also valid for any yli polygon not just a triangle.
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