
We investigate Problem 6 of the International Mathematial Olympiad of this year This artile presents two

solutions.

The �rst one, like the solution of Problem 2, does not make use of any speial idea, and does not require anything

beyond high-shool mathematis, but it starts with a surprising step that might look disouraging at the �rst sight.

The seond solution requires muh more mathematial bakground. It uses as extension of the set of integers, the

theory of the so-alled Eulerian integers. This is the prie for revealing the most probable origin of the problem.

Problem 6. Let a, b, c, d be integers, suh that a > b > c > d > 0. Given that

(6) ac+ bd = (b + d+ a− c)(b+ d− a+ c),

show that ab+ cd is not a prime number.

By rearranging equation (6), we have

(7) a2 − ac+ c2 = b2 + bd+ d2.

Let us use this form from now on.

Solution 1: Substitute.

The proof is indiret. Assume that ab+ cd = p, where p is a prime. We have the simultaneous equations

(8) a2 − ac+ c2 = b2 + bd+ d2, ab+ cd = p.

The number of unknowns and equations an be redued by expressing some appropriate expression out of one equation

and substituting it into the other. In order to make alulations more onvenient, let us onsider everything modulo p.

Aording to the seond equation, ab ≡ −cd (mod p). Multiply equation (7) by b2, and substitute −cd for ab:

0 = b2(b2 + bd+ d2 − a2 + ac− c2) = b4 + b3d+ b2d2 − (ab)2 + ab · bc− b2c2 ≡

≡ b4 + b3d+ b2d2 − (cd)2 − cd · bc− b2c2 = (b+ c)(b − c)(b2 + bd+ d2) (mod p).

The resulting expression is a produt of three fators, one of whih is equal to the quantity in equation (7). It follows

from the ongruene that one of the three fators b+ c, b− c and b2 + bd+ d2 is divisible by p, as we assumed that p

was a prime. The numbers b + c and b − c are positive and less than ab + cd = p, and thus annot be divisible by p.

There remains the only possibility that b2 + bd+ d2 is divisible by p. As

0 < b2 + bd+ d2 < ab+ ab+ cd < 2(ab+ cd) = 2p,

the number b2 + bd+ d2 an only be divisible by p if it equals p. Hene the simultaneous equations to solve are

(9) a2 − ac+ c2 = b2 + bd+ d2 = ab+ cd = p.

No it is easy to show the ontradition. Consider equation (9) modulo a (as a is the largest one of the unknowns). It

follows that c(c−d) = ab+ac−a2 is divisible by a. But that is impossible, as a and c are relative primes (or otherwise

ab+ cd ould not be a prime), and 0 < c− d < a.

Solution 2: With a little help from Euler.

It is lear to anyone who has read about them that equation (7) is losely related to Eulerian integers.

Let ̺ be a omplex third root of unity. The omplex numbers of the form x+ y̺, where x and y are integers, are

alled Eulerian integers. Eulerian integers form a lattie of regular triangles in the omplex plane (Figure 1 ).
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This number set has several remarkable and useful properties. Leonhard Euler also used these numbers when he

proved Fermat's last theorem for the exponent 3. Let us brie�y summarize the most important onepts and theorems

related to Eulerian integers that will be needed in the proof.

Addition, subtration and multipliation of Eulerian integers are de�ned in the natural way. Remember that

̺2 = −̺− 1:
(x+ y̺)± (u + v̺) = (x± u) + (y ± v)̺;

(x+ y̺)(u+ v̺) = xu + (xv + yu)̺+ yv̺2 = (xu− yv) + (xv + uy − yv)̺.

The ommutative, assoiative and distributive properties of addition and multipliation of integers or real numbers

are also valid for Eulerian integers. The properties of the numbers 0 and 1 also remain valid: for example if 0 is added

to any Eulerian integer, the sum equals the original number, or 0 times any Eulerian integer is 0.

The onjugate of an Eulerian integer α = x+ y̺ is the number α = x+ y̺2 = (x− y)− y̺.

There is a very important quantity alled the norm of an Eulerian integer. The norm of an Eulerian integer

α = x+ y̺ is denoted by N(α) and de�ned as follows:

N(α) = α · α = x2 − xy + y2.

The norm is always a non-negative integer, and 0 is the only number whose norm is 0.

The norm is learly equal to the square of the modulus of the omplex number. Thus the norm of a produt is the

produt of the norms of the fators:

N(α · β) = N(α) ·N(β).

An Eulerian integer α is a fator of an Eulerian integer β if there exists an Eulerian integer γ suh that αγ = β.

It follows from the multipliativity of the norm that if α | β then N(α) | N(β). (The latter divisibility is meant in the

set of rational integers.)

There are six Eulerian integers whose norm is 1. They are alled units and marked in Figure 1. The units divide

all Eulerian integers.

Two Eulerian integers are said to be assoiate if they are obtained from eah other by multipliation with a unit,

that is, by rotation about 0 through a multiple of 60◦.
A non-unit Eulerian integer π is said to be irreduible if its only fators are the units and itself.

A non-unit and non-zero Eulerian integer π is said to be a prime if π | αβ implies π | α or π | β for any Eulerian

integers α, β. In order to distinguish the primes in the system of Eulerian integers from real primes, let us all them

Eulerian primes.

The most important theorems of the theory of Eulerian integers are the following

1. Irreduible Eulerian integers are the same as Eulerian primes.

2. The fundamental theorem of number theory is valid for Eulerian integers, too: Every non-zero and non-unit

Eulerian integer an be expressed as a produt of Eulerian primes and units, and the representation is unique

up to assoiates, that is, in any two representations, the orresponding fators are assoiates of eah other.

3. The real primes of the form 3k + 2 are also Eulerian primes. The primes of the form 3k + 1 an be redued to

the produt of two non-assoiate Eulerian primes (e.g. 7 = (3 + ̺)(2− ̺)). The prime fator deomposition of 3

is 3 = −̺2(1− ̺)2.

The theorems show that there is a lose relationship between the prime fators of an Eulerian integer α and the

prime fators of N(α). The square of eah prime fator 3k+2 of α ours in the prime fator deomposition of N(α),
and so do the norms of all the other prime fators, whih are either 3 or primes of the form 3k + 1.

For example, let α = 10 + 8̺. Its resolution into Eulerian primes is 2 · (2 + ̺)(3 + ̺) and that of its norm is

N(α) = N(2) ·N(2 + ̺) ·N(3 + ̺) = 22 · 3 · 7.
Conversely, the prime fators of N(α) �almost determine" the prime fators of α. All prime fators 3k+2 of N(α)

are also prime fators of α (with half the exponent), and eah fator of 3 in the resolution of N(α) is the norm of the

Eulerian prime 1−̺. The prime fators 3k+1 of N(α) are also norms of prime fators of α, but there are two possible

Eulerian primes in eah ase, even if assoiates are not onsidered di�erent.

Bak to the problem: let α = a+ c̺ and β = b− d̺. Aording to the given ondition, a2 − ac+ c2 = b2 + bd+ d2,

that is, N(α) = N(β). We have to prove that ab + cd, that is, the �real part� of αβ = (ab + cd) + (bc + cd − ad)̺,
annot be a prime.

As N(α) = N(β), the prime fators of the two Eulerian integers are �almost the same". They have some prime

fators in ommon, and the remaining fators are pairwise onjugate. This an be put as follows:

(10) α = ε1 · π1 · · ·πk · µ1 · · ·µl and β = ε2 · π1 · · ·πk · µ1 · · ·µl,

where π1, . . . , πk and µ1, . . . , µl are Eulerian primes and ε1, ε2 are units.
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Let γ = π1 · . . . · πk and δ = µ1 · . . . · µl as above. Then

α = ε1γδ and β = ε2γδ.

(It may happen that there are only ommon or only di�erent prime fators in α and β; then, of ourse γ = 1, or δ = 1.)
Consider now the number

(11) αβ = (ab+ cd) + (bc+ cd− ad)̺ = ε1ε2γ
2 ·N(δ).

This number is divisible by N(δ), and thus ab+ cd and bc+ cd− ad are also divisible by N(δ). What remains to prove

is that neither N(δ) = 1 nor ab+ cd = N(δ) is possible.
If N(δ) = 1, that is δ = 1, then α and β are assoiates, whih means that they an be obtained from eah other

by a few 60◦ rotations about 0. The number of these rotations is determined by the arguments of α and β.

Figure 2

It follows from the ondition a > b > c > d > 0 that the argument of α is between 0◦ and 60◦, and that of β is

between −30◦ and 0◦ (Figure 2 ). Thus the di�erene of the arguments is between 0◦ and 90◦, and hene the angle of

rotation is exatly 60◦, that is α = (1 + ̺)β. But then,

α = a+ c̺ = (1 + ̺)(b − d̺) = (b+ d) + b̺,

whih is impossible, as b > c. Thus the assumption N(δ) = 1 leads to a ontradition.

If ab+ cd = N(δ), then by dividing equation (11) by N(δ) we get

αβ

N(δ)
=

ab+ cd

N(δ)
+

ad+ bc− cd

N(δ)
· ̺ = ε1ε2 · γ

2.

This number, as shown by the right-hand side, is an Eulerian integer. Its argument is the sum of the arguments of α

and β, whih is between −30◦ and 60◦, and its �real part� is

ab+ cd

N(δ)
= 1, by assumption. The only Eulerian integer

satisfying this requirement is 1 (Figure 3 ), hene ε1ε2γ
2 = 1 and αβ = N(δ).

Figure 3

Thus the produt of the numbers α and β is the positive real number N(δ). As N(α) = N(β), it follows that the
two numbers are onjugates. But then

α = a+ c̺ = β = b− d̺ = b+ d(1 + ̺) = (b+ d) + d̺,

whih is impossible, as c > d. The assumption ab+ cd = N(δ) also leads to a ontradition. This ompletes the proof.

Solution 2 not only proves the statement of the problem, but also provides a onstrution for �nding appropriate

numbers a, b, c, d with a > b > c > d and

a2 − ac+ c2 = b2 + bd+ d2.
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All we need to do is �nd Eulerian integers of the appropriate arguments.

For example, setting

α = a+ c̺ = (4 + ̺)(3 + ̺) = 11 + 6̺, β = b− d̺ = (4 + ̺)(3 + ̺) = 9− ̺,

a = 11, b = 9, c = 6 and d = 1, with
a2 − ac+ c2 = b2 + bd+ d2 = 91.

(Obviously, ab+ cd = 105 is not a prime.)
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