
We investigate Problem 6 of the International Mathemati
al Olympiad of this year This arti
le presents two

solutions.

The �rst one, like the solution of Problem 2, does not make use of any spe
ial idea, and does not require anything

beyond high-s
hool mathemati
s, but it starts with a surprising step that might look dis
ouraging at the �rst sight.

The se
ond solution requires mu
h more mathemati
al ba
kground. It uses as extension of the set of integers, the

theory of the so-
alled Eulerian integers. This is the pri
e for revealing the most probable origin of the problem.

Problem 6. Let a, b, c, d be integers, su
h that a > b > c > d > 0. Given that

(6) ac+ bd = (b + d+ a− c)(b+ d− a+ c),

show that ab+ cd is not a prime number.

By rearranging equation (6), we have

(7) a2 − ac+ c2 = b2 + bd+ d2.

Let us use this form from now on.

Solution 1: Substitute.

The proof is indire
t. Assume that ab+ cd = p, where p is a prime. We have the simultaneous equations

(8) a2 − ac+ c2 = b2 + bd+ d2, ab+ cd = p.

The number of unknowns and equations 
an be redu
ed by expressing some appropriate expression out of one equation

and substituting it into the other. In order to make 
al
ulations more 
onvenient, let us 
onsider everything modulo p.

A

ording to the se
ond equation, ab ≡ −cd (mod p). Multiply equation (7) by b2, and substitute −cd for ab:

0 = b2(b2 + bd+ d2 − a2 + ac− c2) = b4 + b3d+ b2d2 − (ab)2 + ab · bc− b2c2 ≡

≡ b4 + b3d+ b2d2 − (cd)2 − cd · bc− b2c2 = (b+ c)(b − c)(b2 + bd+ d2) (mod p).

The resulting expression is a produ
t of three fa
tors, one of whi
h is equal to the quantity in equation (7). It follows

from the 
ongruen
e that one of the three fa
tors b+ c, b− c and b2 + bd+ d2 is divisible by p, as we assumed that p

was a prime. The numbers b + c and b − c are positive and less than ab + cd = p, and thus 
annot be divisible by p.

There remains the only possibility that b2 + bd+ d2 is divisible by p. As

0 < b2 + bd+ d2 < ab+ ab+ cd < 2(ab+ cd) = 2p,

the number b2 + bd+ d2 
an only be divisible by p if it equals p. Hen
e the simultaneous equations to solve are

(9) a2 − ac+ c2 = b2 + bd+ d2 = ab+ cd = p.

No it is easy to show the 
ontradi
tion. Consider equation (9) modulo a (as a is the largest one of the unknowns). It

follows that c(c−d) = ab+ac−a2 is divisible by a. But that is impossible, as a and c are relative primes (or otherwise

ab+ cd 
ould not be a prime), and 0 < c− d < a.

Solution 2: With a little help from Euler.

It is 
lear to anyone who has read about them that equation (7) is 
losely related to Eulerian integers.

Let ̺ be a 
omplex third root of unity. The 
omplex numbers of the form x+ y̺, where x and y are integers, are


alled Eulerian integers. Eulerian integers form a latti
e of regular triangles in the 
omplex plane (Figure 1 ).
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This number set has several remarkable and useful properties. Leonhard Euler also used these numbers when he

proved Fermat's last theorem for the exponent 3. Let us brie�y summarize the most important 
on
epts and theorems

related to Eulerian integers that will be needed in the proof.

Addition, subtra
tion and multipli
ation of Eulerian integers are de�ned in the natural way. Remember that

̺2 = −̺− 1:
(x+ y̺)± (u + v̺) = (x± u) + (y ± v)̺;

(x+ y̺)(u+ v̺) = xu + (xv + yu)̺+ yv̺2 = (xu− yv) + (xv + uy − yv)̺.

The 
ommutative, asso
iative and distributive properties of addition and multipli
ation of integers or real numbers

are also valid for Eulerian integers. The properties of the numbers 0 and 1 also remain valid: for example if 0 is added

to any Eulerian integer, the sum equals the original number, or 0 times any Eulerian integer is 0.

The 
onjugate of an Eulerian integer α = x+ y̺ is the number α = x+ y̺2 = (x− y)− y̺.

There is a very important quantity 
alled the norm of an Eulerian integer. The norm of an Eulerian integer

α = x+ y̺ is denoted by N(α) and de�ned as follows:

N(α) = α · α = x2 − xy + y2.

The norm is always a non-negative integer, and 0 is the only number whose norm is 0.

The norm is 
learly equal to the square of the modulus of the 
omplex number. Thus the norm of a produ
t is the

produ
t of the norms of the fa
tors:

N(α · β) = N(α) ·N(β).

An Eulerian integer α is a fa
tor of an Eulerian integer β if there exists an Eulerian integer γ su
h that αγ = β.

It follows from the multipli
ativity of the norm that if α | β then N(α) | N(β). (The latter divisibility is meant in the

set of rational integers.)

There are six Eulerian integers whose norm is 1. They are 
alled units and marked in Figure 1. The units divide

all Eulerian integers.

Two Eulerian integers are said to be asso
iate if they are obtained from ea
h other by multipli
ation with a unit,

that is, by rotation about 0 through a multiple of 60◦.
A non-unit Eulerian integer π is said to be irredu
ible if its only fa
tors are the units and itself.

A non-unit and non-zero Eulerian integer π is said to be a prime if π | αβ implies π | α or π | β for any Eulerian

integers α, β. In order to distinguish the primes in the system of Eulerian integers from real primes, let us 
all them

Eulerian primes.

The most important theorems of the theory of Eulerian integers are the following

1. Irredu
ible Eulerian integers are the same as Eulerian primes.

2. The fundamental theorem of number theory is valid for Eulerian integers, too: Every non-zero and non-unit

Eulerian integer 
an be expressed as a produ
t of Eulerian primes and units, and the representation is unique

up to asso
iates, that is, in any two representations, the 
orresponding fa
tors are asso
iates of ea
h other.

3. The real primes of the form 3k + 2 are also Eulerian primes. The primes of the form 3k + 1 
an be redu
ed to

the produ
t of two non-asso
iate Eulerian primes (e.g. 7 = (3 + ̺)(2− ̺)). The prime fa
tor de
omposition of 3

is 3 = −̺2(1− ̺)2.

The theorems show that there is a 
lose relationship between the prime fa
tors of an Eulerian integer α and the

prime fa
tors of N(α). The square of ea
h prime fa
tor 3k+2 of α o

urs in the prime fa
tor de
omposition of N(α),
and so do the norms of all the other prime fa
tors, whi
h are either 3 or primes of the form 3k + 1.

For example, let α = 10 + 8̺. Its resolution into Eulerian primes is 2 · (2 + ̺)(3 + ̺) and that of its norm is

N(α) = N(2) ·N(2 + ̺) ·N(3 + ̺) = 22 · 3 · 7.
Conversely, the prime fa
tors of N(α) �almost determine" the prime fa
tors of α. All prime fa
tors 3k+2 of N(α)

are also prime fa
tors of α (with half the exponent), and ea
h fa
tor of 3 in the resolution of N(α) is the norm of the

Eulerian prime 1−̺. The prime fa
tors 3k+1 of N(α) are also norms of prime fa
tors of α, but there are two possible

Eulerian primes in ea
h 
ase, even if asso
iates are not 
onsidered di�erent.

Ba
k to the problem: let α = a+ c̺ and β = b− d̺. A

ording to the given 
ondition, a2 − ac+ c2 = b2 + bd+ d2,

that is, N(α) = N(β). We have to prove that ab + cd, that is, the �real part� of αβ = (ab + cd) + (bc + cd − ad)̺,

annot be a prime.

As N(α) = N(β), the prime fa
tors of the two Eulerian integers are �almost the same". They have some prime

fa
tors in 
ommon, and the remaining fa
tors are pairwise 
onjugate. This 
an be put as follows:

(10) α = ε1 · π1 · · ·πk · µ1 · · ·µl and β = ε2 · π1 · · ·πk · µ1 · · ·µl,

where π1, . . . , πk and µ1, . . . , µl are Eulerian primes and ε1, ε2 are units.
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Let γ = π1 · . . . · πk and δ = µ1 · . . . · µl as above. Then

α = ε1γδ and β = ε2γδ.

(It may happen that there are only 
ommon or only di�erent prime fa
tors in α and β; then, of 
ourse γ = 1, or δ = 1.)
Consider now the number

(11) αβ = (ab+ cd) + (bc+ cd− ad)̺ = ε1ε2γ
2 ·N(δ).

This number is divisible by N(δ), and thus ab+ cd and bc+ cd− ad are also divisible by N(δ). What remains to prove

is that neither N(δ) = 1 nor ab+ cd = N(δ) is possible.
If N(δ) = 1, that is δ = 1, then α and β are asso
iates, whi
h means that they 
an be obtained from ea
h other

by a few 60◦ rotations about 0. The number of these rotations is determined by the arguments of α and β.

Figure 2

It follows from the 
ondition a > b > c > d > 0 that the argument of α is between 0◦ and 60◦, and that of β is

between −30◦ and 0◦ (Figure 2 ). Thus the di�eren
e of the arguments is between 0◦ and 90◦, and hen
e the angle of

rotation is exa
tly 60◦, that is α = (1 + ̺)β. But then,

α = a+ c̺ = (1 + ̺)(b − d̺) = (b+ d) + b̺,

whi
h is impossible, as b > c. Thus the assumption N(δ) = 1 leads to a 
ontradi
tion.

If ab+ cd = N(δ), then by dividing equation (11) by N(δ) we get

αβ

N(δ)
=

ab+ cd

N(δ)
+

ad+ bc− cd

N(δ)
· ̺ = ε1ε2 · γ

2.

This number, as shown by the right-hand side, is an Eulerian integer. Its argument is the sum of the arguments of α

and β, whi
h is between −30◦ and 60◦, and its �real part� is

ab+ cd

N(δ)
= 1, by assumption. The only Eulerian integer

satisfying this requirement is 1 (Figure 3 ), hen
e ε1ε2γ
2 = 1 and αβ = N(δ).

Figure 3

Thus the produ
t of the numbers α and β is the positive real number N(δ). As N(α) = N(β), it follows that the
two numbers are 
onjugates. But then

α = a+ c̺ = β = b− d̺ = b+ d(1 + ̺) = (b+ d) + d̺,

whi
h is impossible, as c > d. The assumption ab+ cd = N(δ) also leads to a 
ontradi
tion. This 
ompletes the proof.

Solution 2 not only proves the statement of the problem, but also provides a 
onstru
tion for �nding appropriate

numbers a, b, c, d with a > b > c > d and

a2 − ac+ c2 = b2 + bd+ d2.
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All we need to do is �nd Eulerian integers of the appropriate arguments.

For example, setting

α = a+ c̺ = (4 + ̺)(3 + ̺) = 11 + 6̺, β = b− d̺ = (4 + ̺)(3 + ̺) = 9− ̺,

a = 11, b = 9, c = 6 and d = 1, with
a2 − ac+ c2 = b2 + bd+ d2 = 91.

(Obviously, ab+ cd = 105 is not a prime.)
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