
The prisoner

J. V. Ponelet, (See the inside bak over! ) a 24-year-old soldier of Napoléon was taken prisoner by Kutuzov's

army while retreating from Mosow. In the severe winter of 1812�13, he and his fellows were marhed 800 km aross

the Russian steppe to the prisoner amp of Saratov. In aptivity, Ponelet realled his studies ompleted reently, and

the memories started to live a new life in his mind. With no aess to a library, without any spiritual ompanion and

tormented by physial pain, the young military engineer disovered new areas of geometry. He developed the onept

of ideal points, he dreamed about a speial mapping alled polarity, and polygons were daning around in his mind.

Ponelet's theorem, the topi of this artile, was also born there.

The prisoners who survived, inluding Ponelet, were released in the September of 1814. The engineer-mathematiian's

thoughts bred in aptivity were published in 1822. His book was alled �Treatise on the Projetive Properties of Figu-

res.� The following theorem is from that book.

Ponelet's Theorem: Let the irle a lie in the interior of a irle e, not touhing it. Starting at an arbitrary

point A0 on e, the points A1, A2, . . . of irle e an be suessively onstruted, suh that the hords A0A1, A1A2, . . .

are all tangent to the irle a, and any two onseutive lines should be di�erent.

It may happen that we get bak to A0 in a �nite number of steps, that is, An = A0. In that ase, we always end

up at the starting point, no matter how it is hosen on the irle e, and the number of steps required will always be

the same (n).

Figure 1

The theorem does not laim that this will always happen, but that whether or not we will get bak depends on

the size and mutual position of the two irles only and not on the partiular hoie of the starting point.

For onentri irles, the statement is obvious. In the general ase, however, the proof is quite ompliated. This

innoent-looking theorem is not only interesting beause of its romanti birth, but also beause it leads us into the thik

of 19th-entury mathematis. Ponelet's result, to be stated in its general form two hapters below, is equivalent to the

group property of ubi urves and to the addition theorems of ellipti funtions, the generalizations of trigonometri

funtions.

Ponelet did formulate his theorem for arbitrary irreduible seond order urves (see Problem 6) rather than irles.

It is unneessary for one urve to be inside the other one, but that kind of generalization would make the elementary

treatment very di�ult.

Penils of irles

The (a�ne) equation of a irle a of radius r1 entered at Oa(ua, va) is

(1) (x− ua)
2 + (y − va)

2 − r2a = 0.

Let a(x, y) denote the polynomial on the left-hand side as a funtion of x and y. If a point P (ξ, η) lies on this irle

then

a(ξ, η) = 0,

and if not, then

a(ξ, η) 6= 0.

In the latter ase, the value of a(ξ, η) not only shows that P does not lie on the irle, but also the way it does not lie

on it.
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Figure 2

The part (ξ − u1)
2
+(η − va)

2
of the expression a(ξ, η) omputes the square of the length of segment OaP . If a(ξ, η)

is negative, it means that OAP
2 < r2a, that is, P lies in the interior of the irle a. If it is positive, then P lies outside

the irle and a(ξ, η) is equal to the square of the tangent drawn to the irle from P (Figure 2 ).

We an say a little more that that. It is true in both the positive and the negative ase that for all seants drawn

to the irle from P interseting the irle at R and Q, the value of PR · PQ is onstant, that is, independent of the

hoie of the seant. This an be proved with the help of similar triangles arising from the equal angles subtended by

the hord at the points of a segment of a irle and the angle enlosed between the hord and the tangent drawn at

its endpoints.

This onstant value

1

of PR · PQ is also alled the power of the point P with respet to the irle a, and it is equal

to OaP
2 − r2a = a(ξ, η).

Thus we an say that the equation

a(x, y) = t

is satis�ed by those points whose power with respet to the irle a is t. For t > 0, these are the points for whih the

square of the tangent is t.

Let b be a irle di�erent from a, with the equation

b(x, y) = (x− ub)
2
+ (y − vb)

2 − r2b = 0.

Consider the points for whih the ratio of the tangents drawn to a and b is onstant. Generally speaking, let c be the

lous of those points in the plane whose power with respet to a and power with respet to b are in the ratio α to β.

The equation of the set c is

(2) βa(x, y)− αb(x, y) = 0.

This equation also represents a irle (or a point, or the empty set, or a line if α = β), as it is an equation in two

variables where the oe�ients of x2
and y2 are equal (zero if α = β) and there is no term in xy.

The set of urves of the form (2) is alled the penil generated by a and b. From any two elements of the penil,

every element an be obtained by means of a linear ombination. Thus the penil is generated by any two of its

elements, that is, any two elements determine the system.

If a and b are two arbitrary irles of the penil, and c is any element of the system, then the ratios of the powers

of all points of c with respet to a and are the same.

Figure 3

It is not hard to show that there are three kinds of penils of irles: non-interseting, touhing and interseting.

In the �rst ase, no two irles of the system share a ommon point, in the seond ase all the irles touh at one

point, and in the third ase they all pass through two ommon points. (See also Problems 1 and 2.)

Ponelet's reasoning

1

If PR and PQ are onsidered oriented segments then for interior points the produt PR · PQ will be negative, as R and Q lie on

opposite sides of R.
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In this hapter, there will be very little proof, it is rather an outline of Ponelet's reasoning. All the more, so, as

the proof of the last hapter will also shed light to some of the details here.

A famous theorem by L. Euler establishes a relationship between the radii r and R of the insribed and irumsri-

bed irles of a triangle and the distane d of their entres:

(3) R2 − d2 = 2Rr.

The proof an be found in Geometry Revisited by H. S. M. Coxeter and S. L. Greitzer (Theorem 2.1.2), but Problem 3

also provides some help.

Assume now that the task is to onstrut a triangle, given the radii of the irumsribed and insribed irles and

the distane between their entres. It follows from the theorem that if the three data do not satisfy ondition (3) then

there is no suh triangle but there are in�nitely many solutions if they do.

This is similar to onstruting a triangle when the three angles are given. The solution only exists if the sum of

the angles is 180◦, but then there are in�nitely many of them. In the latter ase, one an even hoose one side of

the triangle arbitrarily, and still get a solution. Similarly, if the radii R and r of the irles e and a satisfy equation

(3), then any point of e an be hosen as one vertex of the triangle irumsribed about a. Obviously, this statement

requires a proof, see Problem 3 for a hint. From the statement and Euler's theorem, Ponelet's theorem follows for

n = 3: the polygon will only lose up in three steps if the ondition (3) holds, but then it will lose up wherever the

starting point is.

Figure 4

Let us investigate how the �imaginary� triangles orresponding to data not satisfying equation (3) fail to exist. The

steps of Ponelet's proof and the way he omplains about the lak of onstruting tools in the foreword of his book

suggest that this was the question the imprisoned engineer wanted to answer.

Figure 5

Figure 5 shows an attempt to onstrut a triangle when the data are inonsistent. The irles e and a orrespond

to suh a situation. From an arbitrary point A of the irle e, a tangent is drawn to a. The tangent intersets e at

the next vertex B of the triangle. C is obtained by drawing the other tangent to a from B. As the line AC does not

touh a, it is lear that the onstrution was not suessful. After a number of similar attempts, Ponelet must have

notied (as that is what he has proved) that although none of the lines AC obtained by the onstrution touh the

irle a, they all do touh a ertain other irle c. What is more, this irle c belongs to the penil generated by e

and a. This is partiularly apparent in the ase of interseting irles a, e, when the onstrution of the triangle is

obviously hopeless.

Thus the triangles do not exist �by following a very regular pattern.� It has turned out that beyond triangles and

their two irles Euler's theorem has also something to say about the polygon that snakes its way between the irles

of a penil.

The observations lead to the following generalization of the above onstrution problem:

Let a given irle e and the irles a, b, c in its interior all belong to the same penil. Construt a triangle, suh

that its irumsribed irle is e, and its sides AB, BC, AC touh that the irles a, b, c, respetively.

There are two tangents to a irle from an exterior point. In order to eliminate the ambiguity as to whih tangent

to draw in the onstrution, let us de�ne a �xed sense of rotation for eah of the irles a, b, c, and require that the
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diretions of

−−→
AB,

−−→
BC,

−→
CA on the sides of the triangle ABC to be onstruted should all have the same orientation

that the irles they touh.

Figure 6

The solution of the onstrution problem is similar to that of the above problem, but now the proof is even more

di�ult. As before, the di�ulty does not lie in the onstrution itself, but in the disussion of whether there are

solutions in various ases: For appropriate irles e, a, b, c (and appropriate orientation on a, b, c) the onstrution will

always produe a unique triangle, whihever point of e is hosen as a starting point. In general, furthermore, one an

notie again that the lines AC always touh a ertain element c′ of the penil, and they always touh it in the same

orientation. This irle c′, however, is di�erent from the given c in most of the ases. Now we are not investigating

when does this irle c′ oinide with c, as it is surprising enough that suh a c′ should exist at all.

Consider now the mapping de�ned on the set of points of the irle e that maps the point X ∈ e onto the point

where the tangent drawn from X in the appropriate diretion to the (direted) irle a intersets the irle e again. If

the irle a oinides with e, then this mapping is de�ned to be the identity that maps the points of e onto themselves.

If they are onentri but not idential, the mapping is a simple rotation. In any other ase, it is not a rotation, only

similar to it. That kind of mapping is alled an �oblique rotation�. The omposition of two onseutive rotations about

the same point is equivalent to a single rotation through an angle equal to the sum of the two angles of rotation.

Aording to the above observation, the �rst part of this statement an be generalized: The omposition of the

oblique rotations with respet to the direted irle a and then with respet to the direted irle b is also an oblique

rotation, the one determined by the irle c′ above. Jaobi's proof will show what is the number, or measure that

orresponds to the angle of rotation in the general ase. As if on the set P omprising the irle e and the oriented

irles of the penil lying in its interior, inluding the one point irle (see Problem 2) there were an operation ⊛ that

orresponds to the omposition of oblique rotations:

a⊛ b = c′.

What Ponelet atually did, although he did not even mention suh abstrat algebrai onepts, was to show that

this operation was assoiative and ommutative. Thus the set P is a ommutative group, in other words an Abelian

group, with respet to the above operation, as the remaining group axioms also hold: e is the identity element, and

the inverse of a given irle is the very same irle but oriented in the opposite way.

As a result of his argument, Ponelet arrived at a muh more general statement than the one stated above:

Ponelet's General Theorem: Let e be a irle of a non-interseting penil and let a1, a2, . . . , an be (not

neessarily di�erent) oriented irles in the interior of e that belong to the same penil. Starting at an arbitrary point A0

of the irle e, the points A1, A2, . . . , An are onstruted on the same irle, suh that the lines A0A1, A1A2, . . . , An−1An

touh the irles a1, a2, . . . , an, respetively, in the appropriate diretion. It may happen that at the end of the

onstrution, we get bak to the starting point, that is, An = A0. The theorem states that in that ase, we will always

get bak to the starting point in the n-th step, whihever point of e we start from. We do not even need to take are

to draw the tangents to the irles in a �xed order.
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Figure 7

Proof. The omposition of the oblique rotations of the irle e with respet to the irles a1, a2, . . . , an is equivalent

to the oblique rotation determined by the direted irle

b = a1 ⊛ a2 ⊛ · · ·⊛ an

of the penil. This transformation maps the point A0 onto itself, thus the tangent drawn to the direted irle b from

A0 annot interset the irle e, it must be tangent to e, too. Hene b = e, as all other elements of the penil lie inside

e, and annot touh it either. The oblique rotation orresponding to e is the identity, therefore if we start at any other

point instead of A0, we will get bak to that point again. As the group is ommutative, the order of the tangents

drawn to the given irles does not matter either.

The ase of a1 = a2 = · · · = an = a gives Ponelet's theorem as stated above. In that ase it is not neessary to

assign a diretion to the irles, as the reversal of the orientation of the irle a (or any one of a1, a2, . . . , an in the

general ase) only results in the very same tangents drawn, but in reverse order and in opposite diretion.

Ellipti integrals

In 1827, J. Steiner set the following problem in the Journal für die reine und angewandte Mathematik

2

:

If a pentagon is both yli and irumsribed, what is the relationship between the radii of the two irles and

the distane between their entres? Solve the same problem for polygons of 6, 7, 8, 9 and 10 sides, too.

Based on Ponelet's theorem, Steiner asked for the algebrai ondition for the polygon to lose up. Steiner knew

the solution in these ases, but he did not set the problem in vain. It raised Jaobi's interest, and Jaobi found a new

and extraordinary proof for Ponelet's theorem.

Jaobi was working on ellipti integrals at the time. The problem of ellipti integrals was born out of the investiga-

tions of Prine G. Fagnano into the properties of the ellipse and the lemnisate. Fagnano wanted to determine the

length of the ar that belongs to a hord of length t drawn from the origin in the lemnisate (x2 + y2)
2

= x2 − y2.

J. Bernoulli and L. Euler also faed an equivalent question in their studies of elastiity. Neither of them managed to

�nd the funtion I(t) expressing the length of the lemnisate ar.

What Fagnano ahieved was �nding the length of the hord that belongs to an ar twie as long as the ar that

belongs to t. Euler generalized the method by providing an addition formula to express the length of the hord that

belongs to the ar whose length is the sum of the lengths of the ars that belong to the hords of lengths t1 and t2. He

even went beyond that: He desribed a wide olletion of ar length and area problems (integrals, in general) where

suh an addition formula an be found. These are alled ellipti integrals.

Figure 8. If u =
2t
√
1− t4

1 + t4
then I(u) = 2I(t)

Jaobi also had remarkable results in this area. In ompetition with N. H. Abel, they published one artile after

another in the above mentioned journal. For a hange, Jaobi also tried Steiner's problem. He onstruted a diagram,

drew a few lines in it, expressed their lengths, and to his surprise, he obtained formulae that were strikingly similar to

the addition formulae of ellipti integrals. The formulae showed that there was a quantity, an integral that inreases

by the same amount with eah additional side of the Ponelet polygon. In the ase of onentri irles, this quantity

is the entral angle orresponding to the polygon. In that speial ase, eah �tangent hord� between the two irles

has the same length, and thus the orresponding entral angles are also equal. If n times the entral angle is 360◦ or

a multiple of it, the polygon will lose up in n steps, and otherwise it will not.

Jaobi onluded from the formulae that there is a measure analogous to the entral angle in the general ase,

too. As far as the proof was onerned, it did not matter what the geometrial meaning of the measure was. This is

important to emphasize, as however logial the following proof is, and however easy to follow, Jaobi disovered it by

an entirely di�erent logi, with an entirely di�erent approah.

2

The Journal for Pure and Applied Mathematis was founded by the Prussian engineer A. L. Crelle, enouraged by Abel and Steiner

himself.
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Jaobi's proof

The task is to introdue a measure on the irle e of Ponelet's theorem that assigns the same number to the ars

PP ′
and QQ′

if the lines PP ′
and QQ′

both touh the irle a.

Let us try ars lying lose to eah other �rst. It would also be good if the measures of the ars PQ and P ′Q′
were

equal. Those small ars have almost the same length as the segments PQ and P ′Q′
. The segments are, unfortunately,

not equal in length, but there is a simple relationship between them. Sine the angles subtended at the irumferene

of irle e are equal, the triangles PQT and Q′P ′T are similar. Thus

(4)
PQ

PT
=

P ′Q

Q′T
.

The denominators approah the lengths of the tangents drawn to the irle a from the points of the ars PQ and

P ′Q′
. Therefore, if the opposite ars PQ and P ′Q′

are to be assigned the same measure then eah of them should be

weighted with the reiproal of the tangent drawn from its points to the irle a.

This idea is easy to visualize. Surround the irle e with a surfae perpendiular to the plane of the irle, like the

lateral surfae of a ylinder. The base of the surfae is the irle itself, but its height should vary pointwise. At a point

P of the irle, set the height of the surfae equal to the reiproal of the length of the tangent drawn from P to the

irle a. The area of the surfae is the measure required.

Figure 9

We laim that the areas orresponding to the ars PQ and P ′Q′
are equal. Eah side of equation (4) is an approximation

of those areas. The lengths of the segments PQ and P ′Q′
approah the lengths of the ars PQ and P ′Q′

, respetively,

and the values of

1

PT
and

1

Q′T
approah the heights of the surfae over the ars. A better approximation of these

areas is obtained if the ar PQ and the ar P ′Q′
opposite are divided into smaller piees, and eah of the smaller piees

is estimated separately with the produt of the hord and the orresponding approximate height. If this is always done

aording to the formula orresponding to the two sides of equation (4), then the areas obtained for the surfaes over

the ars PQ and P ′Q′
will always be equal. With this tehnique, the areas over the two ars an be approahed by

equal quantities to any desired preision, whih is only possible if the two areas themselves are equal.

It follows now that the areas over the ars PP ′
and QQ′

are also equal. Let the points P and P ′
move along the

irle e so that the hord PP ′
should remain tangent to the irle a. It follows from the above onsiderations that

the area over the ar PP ′
will also remain onstant. Let the value of that onstant area be J , and let the area of the

whole surfae be I.

Ponelet's polygon will lose up in n steps going around e m times if and only if mI = nJ . This ondition

is independent of the hoie of the starting point A0. This ompletes the proof of Ponelet's theorem. Note that

Ponelet's polygon will lose up if and only if the quotient

J

I
is rational, and the number of steps required for getting

bak to the starting point is the denominator of this rational number.

The area of the Jaobi surfae has the same property as the ar length of the lemnisate. The ar is a transendent

funtion of the length of hords from a given point, that is, it annot be expressed with a �nite number of elementary

funtions. But it is possible to generalize Fagnano's dupliation formula and set up a formula for multiplying the ar

by n, and that will solve the generalized Steiner problem. This work, however, was only ompleted 25 years later by

A. Cayley.

With a little modi�ation, Jaobi's method an also be used for proving the generalized Ponelet theorem. In order

to do so, �x a point E on the irle e and de�ne the height of the lateral surfae at the point P as the ratio of the

tangents drawn to the irle a from the points E and P : h(P ) =
EEA

PPA

, whih di�ers only by the onstant fator EEA

from the above de�ned height. The motivation for this de�nition is that it makes the height universal, that is eah
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element of the penil determines the same surfae. This is explained by one of the results obtained above. We have

seen that if a, b, e are three elements of a penil of irles then the ratios of the powers of di�erent points of e with

respet to a and b (i.e. the ratios of the tangents, in our ase) are equal:

EEA

EEB

=
PPA

PPB

, that is,

EEA

PPA

=
EEB

PPB

.

If I is the area of the whole surfae and J1, J2, . . . , Jn are the areas over the ars determined by the tangents drawn

to the elements a1, a2, . . . , an of the penil then the ondition for the polygon to lose up is desribed by the equation

J1 + J2 + · · ·+ Jn = mI.

The validity of this equation is learly independent of the hoie of the starting point.

Problems

1. a) Show that the entres of the members of any penil of irles are ollinear.

b) Let the radius of one irle of a penil be R, let the radius of another, smaller irle be r, and let d be the

distane of their entres. Prove that the value of

k =

√

4Rd

(R+ d)
2 − r2

is independent of the hoie of the smaller irle.

c) Show that the penil is onentri, non-interseting, tangent and interseting, respetively if k = 0; 0 < k < 1;
k = 1; 1 < k.

2. Prove that in non-interseting, tangent and interseting penils, respetively there are 2; 1; 0 one point irles,

i.e. �gures of equation

(x − u)2 + (y − v)2 = 0.

3. The irumsribed irle of a triangle ABC is e and its inirle is a. Their radii are R and r, respetively, and

the distane of their entres is d. The points of tangeny on the inirle are X , Y , Z.

a) Prove that the inversion of the irle e with respet to the irle a maps e onto a irle of radius R′ =
Rr2

R2 − d2
,

and its entre's distane from the entre of a is d′ =
dr2

R2 − d2
.

b) Prove that the inversion with respet to the irle a maps the points A, B, C onto the midpoints of the sides of

the triangle XY Z.

c) Prove Euler's theorem.

d) Prove Ponelet's theorem for n = 3.

4. Find the formula orresponding to Euler's theorem for the irumsribed and esribed irles of the triangle.

5. a) Prove that the equation of the element of the penil generated by the irles a(x, y) = 0, b(x, y) = 0 that

passes through the point P (ξ, η) is
b(ξ, η)a(x, y)− a(ξ, η)b(x, y) = 0.

b) Prove that the equation of the line touhing the irle of equation (1) at its point P (ξ, η) is

(ξ − ua)(x − ξ) + (η − va)(y − η) = 0.

c) Prove that the points of tangeny on the tangents drawn form a point to the elements of a penil of irles form

a ubi urve.

6. a) Express the equation orresponding to (1) in homogeneous oordinates, and show that the ideal and imaginary

points (1, i, 0) and (1,−i, 0), where i2 = −1, lie on the irle.

b) Prove that a nonempty irreduible quadrati urve of real oe�ients is a irle if and only if it ontains the

points (1, i, 0) and (1,−i, 0).3

Bibliography

3

The introdution of omplex numbers into geometry is also a result of Ponelet's onsiderations. He pointed out that if omplex

oordinates are allowed then any two quadrati urves have two ommon points. If those two points are projeted to the points (1, i, 0)
and (1,−i, 0) then the two urves are mapped onto two irles. Thus it is enough to prove Ponelet's theorem for two irles.
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