
The prisoner

J. V. Pon
elet, (See the inside ba
k 
over! ) a 24-year-old soldier of Napoléon was taken prisoner by Kutuzov's

army while retreating from Mos
ow. In the severe winter of 1812�13, he and his fellows were mar
hed 800 km a
ross

the Russian steppe to the prisoner 
amp of Saratov. In 
aptivity, Pon
elet re
alled his studies 
ompleted re
ently, and

the memories started to live a new life in his mind. With no a

ess to a library, without any spiritual 
ompanion and

tormented by physi
al pain, the young military engineer dis
overed new areas of geometry. He developed the 
on
ept

of ideal points, he dreamed about a spe
ial mapping 
alled polarity, and polygons were dan
ing around in his mind.

Pon
elet's theorem, the topi
 of this arti
le, was also born there.

The prisoners who survived, in
luding Pon
elet, were released in the September of 1814. The engineer-mathemati
ian's

thoughts bred in 
aptivity were published in 1822. His book was 
alled �Treatise on the Proje
tive Properties of Figu-

res.� The following theorem is from that book.

Pon
elet's Theorem: Let the 
ir
le a lie in the interior of a 
ir
le e, not tou
hing it. Starting at an arbitrary

point A0 on e, the points A1, A2, . . . of 
ir
le e 
an be su

essively 
onstru
ted, su
h that the 
hords A0A1, A1A2, . . .

are all tangent to the 
ir
le a, and any two 
onse
utive lines should be di�erent.

It may happen that we get ba
k to A0 in a �nite number of steps, that is, An = A0. In that 
ase, we always end

up at the starting point, no matter how it is 
hosen on the 
ir
le e, and the number of steps required will always be

the same (n).

Figure 1

The theorem does not 
laim that this will always happen, but that whether or not we will get ba
k depends on

the size and mutual position of the two 
ir
les only and not on the parti
ular 
hoi
e of the starting point.

For 
on
entri
 
ir
les, the statement is obvious. In the general 
ase, however, the proof is quite 
ompli
ated. This

inno
ent-looking theorem is not only interesting be
ause of its romanti
 birth, but also be
ause it leads us into the thi
k

of 19th-
entury mathemati
s. Pon
elet's result, to be stated in its general form two 
hapters below, is equivalent to the

group property of 
ubi
 
urves and to the addition theorems of ellipti
 fun
tions, the generalizations of trigonometri


fun
tions.

Pon
elet did formulate his theorem for arbitrary irredu
ible se
ond order 
urves (see Problem 6) rather than 
ir
les.

It is unne
essary for one 
urve to be inside the other one, but that kind of generalization would make the elementary

treatment very di�
ult.

Pen
ils of 
ir
les

The (a�ne) equation of a 
ir
le a of radius r1 
entered at Oa(ua, va) is

(1) (x− ua)
2 + (y − va)

2 − r2a = 0.

Let a(x, y) denote the polynomial on the left-hand side as a fun
tion of x and y. If a point P (ξ, η) lies on this 
ir
le

then

a(ξ, η) = 0,

and if not, then

a(ξ, η) 6= 0.

In the latter 
ase, the value of a(ξ, η) not only shows that P does not lie on the 
ir
le, but also the way it does not lie

on it.
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Figure 2

The part (ξ − u1)
2
+(η − va)

2
of the expression a(ξ, η) 
omputes the square of the length of segment OaP . If a(ξ, η)

is negative, it means that OAP
2 < r2a, that is, P lies in the interior of the 
ir
le a. If it is positive, then P lies outside

the 
ir
le and a(ξ, η) is equal to the square of the tangent drawn to the 
ir
le from P (Figure 2 ).

We 
an say a little more that that. It is true in both the positive and the negative 
ase that for all se
ants drawn

to the 
ir
le from P interse
ting the 
ir
le at R and Q, the value of PR · PQ is 
onstant, that is, independent of the


hoi
e of the se
ant. This 
an be proved with the help of similar triangles arising from the equal angles subtended by

the 
hord at the points of a segment of a 
ir
le and the angle en
losed between the 
hord and the tangent drawn at

its endpoints.

This 
onstant value

1

of PR · PQ is also 
alled the power of the point P with respe
t to the 
ir
le a, and it is equal

to OaP
2 − r2a = a(ξ, η).

Thus we 
an say that the equation

a(x, y) = t

is satis�ed by those points whose power with respe
t to the 
ir
le a is t. For t > 0, these are the points for whi
h the

square of the tangent is t.

Let b be a 
ir
le di�erent from a, with the equation

b(x, y) = (x− ub)
2
+ (y − vb)

2 − r2b = 0.

Consider the points for whi
h the ratio of the tangents drawn to a and b is 
onstant. Generally speaking, let c be the

lo
us of those points in the plane whose power with respe
t to a and power with respe
t to b are in the ratio α to β.

The equation of the set c is

(2) βa(x, y)− αb(x, y) = 0.

This equation also represents a 
ir
le (or a point, or the empty set, or a line if α = β), as it is an equation in two

variables where the 
oe�
ients of x2
and y2 are equal (zero if α = β) and there is no term in xy.

The set of 
urves of the form (2) is 
alled the pen
il generated by a and b. From any two elements of the pen
il,

every element 
an be obtained by means of a linear 
ombination. Thus the pen
il is generated by any two of its

elements, that is, any two elements determine the system.

If a and b are two arbitrary 
ir
les of the pen
il, and c is any element of the system, then the ratios of the powers

of all points of c with respe
t to a and are the same.

Figure 3

It is not hard to show that there are three kinds of pen
ils of 
ir
les: non-interse
ting, tou
hing and interse
ting.

In the �rst 
ase, no two 
ir
les of the system share a 
ommon point, in the se
ond 
ase all the 
ir
les tou
h at one

point, and in the third 
ase they all pass through two 
ommon points. (See also Problems 1 and 2.)

Pon
elet's reasoning

1

If PR and PQ are 
onsidered oriented segments then for interior points the produ
t PR · PQ will be negative, as R and Q lie on

opposite sides of R.
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In this 
hapter, there will be very little proof, it is rather an outline of Pon
elet's reasoning. All the more, so, as

the proof of the last 
hapter will also shed light to some of the details here.

A famous theorem by L. Euler establishes a relationship between the radii r and R of the ins
ribed and 
ir
ums
ri-

bed 
ir
les of a triangle and the distan
e d of their 
entres:

(3) R2 − d2 = 2Rr.

The proof 
an be found in Geometry Revisited by H. S. M. Coxeter and S. L. Greitzer (Theorem 2.1.2), but Problem 3

also provides some help.

Assume now that the task is to 
onstru
t a triangle, given the radii of the 
ir
ums
ribed and ins
ribed 
ir
les and

the distan
e between their 
entres. It follows from the theorem that if the three data do not satisfy 
ondition (3) then

there is no su
h triangle but there are in�nitely many solutions if they do.

This is similar to 
onstru
ting a triangle when the three angles are given. The solution only exists if the sum of

the angles is 180◦, but then there are in�nitely many of them. In the latter 
ase, one 
an even 
hoose one side of

the triangle arbitrarily, and still get a solution. Similarly, if the radii R and r of the 
ir
les e and a satisfy equation

(3), then any point of e 
an be 
hosen as one vertex of the triangle 
ir
ums
ribed about a. Obviously, this statement

requires a proof, see Problem 3 for a hint. From the statement and Euler's theorem, Pon
elet's theorem follows for

n = 3: the polygon will only 
lose up in three steps if the 
ondition (3) holds, but then it will 
lose up wherever the

starting point is.

Figure 4

Let us investigate how the �imaginary� triangles 
orresponding to data not satisfying equation (3) fail to exist. The

steps of Pon
elet's proof and the way he 
omplains about the la
k of 
onstru
ting tools in the foreword of his book

suggest that this was the question the imprisoned engineer wanted to answer.

Figure 5

Figure 5 shows an attempt to 
onstru
t a triangle when the data are in
onsistent. The 
ir
les e and a 
orrespond

to su
h a situation. From an arbitrary point A of the 
ir
le e, a tangent is drawn to a. The tangent interse
ts e at

the next vertex B of the triangle. C is obtained by drawing the other tangent to a from B. As the line AC does not

tou
h a, it is 
lear that the 
onstru
tion was not su

essful. After a number of similar attempts, Pon
elet must have

noti
ed (as that is what he has proved) that although none of the lines AC obtained by the 
onstru
tion tou
h the


ir
le a, they all do tou
h a 
ertain other 
ir
le c. What is more, this 
ir
le c belongs to the pen
il generated by e

and a. This is parti
ularly apparent in the 
ase of interse
ting 
ir
les a, e, when the 
onstru
tion of the triangle is

obviously hopeless.

Thus the triangles do not exist �by following a very regular pattern.� It has turned out that beyond triangles and

their two 
ir
les Euler's theorem has also something to say about the polygon that snakes its way between the 
ir
les

of a pen
il.

The observations lead to the following generalization of the above 
onstru
tion problem:

Let a given 
ir
le e and the 
ir
les a, b, c in its interior all belong to the same pen
il. Constru
t a triangle, su
h

that its 
ir
ums
ribed 
ir
le is e, and its sides AB, BC, AC tou
h that the 
ir
les a, b, c, respe
tively.

There are two tangents to a 
ir
le from an exterior point. In order to eliminate the ambiguity as to whi
h tangent

to draw in the 
onstru
tion, let us de�ne a �xed sense of rotation for ea
h of the 
ir
les a, b, c, and require that the
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dire
tions of

−−→
AB,

−−→
BC,

−→
CA on the sides of the triangle ABC to be 
onstru
ted should all have the same orientation

that the 
ir
les they tou
h.

Figure 6

The solution of the 
onstru
tion problem is similar to that of the above problem, but now the proof is even more

di�
ult. As before, the di�
ulty does not lie in the 
onstru
tion itself, but in the dis
ussion of whether there are

solutions in various 
ases: For appropriate 
ir
les e, a, b, c (and appropriate orientation on a, b, c) the 
onstru
tion will

always produ
e a unique triangle, whi
hever point of e is 
hosen as a starting point. In general, furthermore, one 
an

noti
e again that the lines AC always tou
h a 
ertain element c′ of the pen
il, and they always tou
h it in the same

orientation. This 
ir
le c′, however, is di�erent from the given c in most of the 
ases. Now we are not investigating

when does this 
ir
le c′ 
oin
ide with c, as it is surprising enough that su
h a c′ should exist at all.

Consider now the mapping de�ned on the set of points of the 
ir
le e that maps the point X ∈ e onto the point

where the tangent drawn from X in the appropriate dire
tion to the (dire
ted) 
ir
le a interse
ts the 
ir
le e again. If

the 
ir
le a 
oin
ides with e, then this mapping is de�ned to be the identity that maps the points of e onto themselves.

If they are 
on
entri
 but not identi
al, the mapping is a simple rotation. In any other 
ase, it is not a rotation, only

similar to it. That kind of mapping is 
alled an �oblique rotation�. The 
omposition of two 
onse
utive rotations about

the same point is equivalent to a single rotation through an angle equal to the sum of the two angles of rotation.

A

ording to the above observation, the �rst part of this statement 
an be generalized: The 
omposition of the

oblique rotations with respe
t to the dire
ted 
ir
le a and then with respe
t to the dire
ted 
ir
le b is also an oblique

rotation, the one determined by the 
ir
le c′ above. Ja
obi's proof will show what is the number, or measure that


orresponds to the angle of rotation in the general 
ase. As if on the set P 
omprising the 
ir
le e and the oriented


ir
les of the pen
il lying in its interior, in
luding the one point 
ir
le (see Problem 2) there were an operation ⊛ that


orresponds to the 
omposition of oblique rotations:

a⊛ b = c′.

What Pon
elet a
tually did, although he did not even mention su
h abstra
t algebrai
 
on
epts, was to show that

this operation was asso
iative and 
ommutative. Thus the set P is a 
ommutative group, in other words an Abelian

group, with respe
t to the above operation, as the remaining group axioms also hold: e is the identity element, and

the inverse of a given 
ir
le is the very same 
ir
le but oriented in the opposite way.

As a result of his argument, Pon
elet arrived at a mu
h more general statement than the one stated above:

Pon
elet's General Theorem: Let e be a 
ir
le of a non-interse
ting pen
il and let a1, a2, . . . , an be (not

ne
essarily di�erent) oriented 
ir
les in the interior of e that belong to the same pen
il. Starting at an arbitrary point A0

of the 
ir
le e, the points A1, A2, . . . , An are 
onstru
ted on the same 
ir
le, su
h that the lines A0A1, A1A2, . . . , An−1An

tou
h the 
ir
les a1, a2, . . . , an, respe
tively, in the appropriate dire
tion. It may happen that at the end of the


onstru
tion, we get ba
k to the starting point, that is, An = A0. The theorem states that in that 
ase, we will always

get ba
k to the starting point in the n-th step, whi
hever point of e we start from. We do not even need to take 
are

to draw the tangents to the 
ir
les in a �xed order.
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Figure 7

Proof. The 
omposition of the oblique rotations of the 
ir
le e with respe
t to the 
ir
les a1, a2, . . . , an is equivalent

to the oblique rotation determined by the dire
ted 
ir
le

b = a1 ⊛ a2 ⊛ · · ·⊛ an

of the pen
il. This transformation maps the point A0 onto itself, thus the tangent drawn to the dire
ted 
ir
le b from

A0 
annot interse
t the 
ir
le e, it must be tangent to e, too. Hen
e b = e, as all other elements of the pen
il lie inside

e, and 
annot tou
h it either. The oblique rotation 
orresponding to e is the identity, therefore if we start at any other

point instead of A0, we will get ba
k to that point again. As the group is 
ommutative, the order of the tangents

drawn to the given 
ir
les does not matter either.

The 
ase of a1 = a2 = · · · = an = a gives Pon
elet's theorem as stated above. In that 
ase it is not ne
essary to

assign a dire
tion to the 
ir
les, as the reversal of the orientation of the 
ir
le a (or any one of a1, a2, . . . , an in the

general 
ase) only results in the very same tangents drawn, but in reverse order and in opposite dire
tion.

Ellipti
 integrals

In 1827, J. Steiner set the following problem in the Journal für die reine und angewandte Mathematik

2

:

If a pentagon is both 
y
li
 and 
ir
ums
ribed, what is the relationship between the radii of the two 
ir
les and

the distan
e between their 
entres? Solve the same problem for polygons of 6, 7, 8, 9 and 10 sides, too.

Based on Pon
elet's theorem, Steiner asked for the algebrai
 
ondition for the polygon to 
lose up. Steiner knew

the solution in these 
ases, but he did not set the problem in vain. It raised Ja
obi's interest, and Ja
obi found a new

and extraordinary proof for Pon
elet's theorem.

Ja
obi was working on ellipti
 integrals at the time. The problem of ellipti
 integrals was born out of the investiga-

tions of Prin
e G. Fagnano into the properties of the ellipse and the lemnis
ate. Fagnano wanted to determine the

length of the ar
 that belongs to a 
hord of length t drawn from the origin in the lemnis
ate (x2 + y2)
2

= x2 − y2.

J. Bernoulli and L. Euler also fa
ed an equivalent question in their studies of elasti
ity. Neither of them managed to

�nd the fun
tion I(t) expressing the length of the lemnis
ate ar
.

What Fagnano a
hieved was �nding the length of the 
hord that belongs to an ar
 twi
e as long as the ar
 that

belongs to t. Euler generalized the method by providing an addition formula to express the length of the 
hord that

belongs to the ar
 whose length is the sum of the lengths of the ar
s that belong to the 
hords of lengths t1 and t2. He

even went beyond that: He des
ribed a wide 
olle
tion of ar
 length and area problems (integrals, in general) where

su
h an addition formula 
an be found. These are 
alled ellipti
 integrals.

Figure 8. If u =
2t
√
1− t4

1 + t4
then I(u) = 2I(t)

Ja
obi also had remarkable results in this area. In 
ompetition with N. H. Abel, they published one arti
le after

another in the above mentioned journal. For a 
hange, Ja
obi also tried Steiner's problem. He 
onstru
ted a diagram,

drew a few lines in it, expressed their lengths, and to his surprise, he obtained formulae that were strikingly similar to

the addition formulae of ellipti
 integrals. The formulae showed that there was a quantity, an integral that in
reases

by the same amount with ea
h additional side of the Pon
elet polygon. In the 
ase of 
on
entri
 
ir
les, this quantity

is the 
entral angle 
orresponding to the polygon. In that spe
ial 
ase, ea
h �tangent 
hord� between the two 
ir
les

has the same length, and thus the 
orresponding 
entral angles are also equal. If n times the 
entral angle is 360◦ or

a multiple of it, the polygon will 
lose up in n steps, and otherwise it will not.

Ja
obi 
on
luded from the formulae that there is a measure analogous to the 
entral angle in the general 
ase,

too. As far as the proof was 
on
erned, it did not matter what the geometri
al meaning of the measure was. This is

important to emphasize, as however logi
al the following proof is, and however easy to follow, Ja
obi dis
overed it by

an entirely di�erent logi
, with an entirely di�erent approa
h.

2

The Journal for Pure and Applied Mathemati
s was founded by the Prussian engineer A. L. Crelle, en
ouraged by Abel and Steiner

himself.
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Ja
obi's proof

The task is to introdu
e a measure on the 
ir
le e of Pon
elet's theorem that assigns the same number to the ar
s

PP ′
and QQ′

if the lines PP ′
and QQ′

both tou
h the 
ir
le a.

Let us try ar
s lying 
lose to ea
h other �rst. It would also be good if the measures of the ar
s PQ and P ′Q′
were

equal. Those small ar
s have almost the same length as the segments PQ and P ′Q′
. The segments are, unfortunately,

not equal in length, but there is a simple relationship between them. Sin
e the angles subtended at the 
ir
umferen
e

of 
ir
le e are equal, the triangles PQT and Q′P ′T are similar. Thus

(4)
PQ

PT
=

P ′Q

Q′T
.

The denominators approa
h the lengths of the tangents drawn to the 
ir
le a from the points of the ar
s PQ and

P ′Q′
. Therefore, if the opposite ar
s PQ and P ′Q′

are to be assigned the same measure then ea
h of them should be

weighted with the re
ipro
al of the tangent drawn from its points to the 
ir
le a.

This idea is easy to visualize. Surround the 
ir
le e with a surfa
e perpendi
ular to the plane of the 
ir
le, like the

lateral surfa
e of a 
ylinder. The base of the surfa
e is the 
ir
le itself, but its height should vary pointwise. At a point

P of the 
ir
le, set the height of the surfa
e equal to the re
ipro
al of the length of the tangent drawn from P to the


ir
le a. The area of the surfa
e is the measure required.

Figure 9

We 
laim that the areas 
orresponding to the ar
s PQ and P ′Q′
are equal. Ea
h side of equation (4) is an approximation

of those areas. The lengths of the segments PQ and P ′Q′
approa
h the lengths of the ar
s PQ and P ′Q′

, respe
tively,

and the values of

1

PT
and

1

Q′T
approa
h the heights of the surfa
e over the ar
s. A better approximation of these

areas is obtained if the ar
 PQ and the ar
 P ′Q′
opposite are divided into smaller pie
es, and ea
h of the smaller pie
es

is estimated separately with the produ
t of the 
hord and the 
orresponding approximate height. If this is always done

a

ording to the formula 
orresponding to the two sides of equation (4), then the areas obtained for the surfa
es over

the ar
s PQ and P ′Q′
will always be equal. With this te
hnique, the areas over the two ar
s 
an be approa
hed by

equal quantities to any desired pre
ision, whi
h is only possible if the two areas themselves are equal.

It follows now that the areas over the ar
s PP ′
and QQ′

are also equal. Let the points P and P ′
move along the


ir
le e so that the 
hord PP ′
should remain tangent to the 
ir
le a. It follows from the above 
onsiderations that

the area over the ar
 PP ′
will also remain 
onstant. Let the value of that 
onstant area be J , and let the area of the

whole surfa
e be I.

Pon
elet's polygon will 
lose up in n steps going around e m times if and only if mI = nJ . This 
ondition

is independent of the 
hoi
e of the starting point A0. This 
ompletes the proof of Pon
elet's theorem. Note that

Pon
elet's polygon will 
lose up if and only if the quotient

J

I
is rational, and the number of steps required for getting

ba
k to the starting point is the denominator of this rational number.

The area of the Ja
obi surfa
e has the same property as the ar
 length of the lemnis
ate. The ar
 is a trans
endent

fun
tion of the length of 
hords from a given point, that is, it 
annot be expressed with a �nite number of elementary

fun
tions. But it is possible to generalize Fagnano's dupli
ation formula and set up a formula for multiplying the ar


by n, and that will solve the generalized Steiner problem. This work, however, was only 
ompleted 25 years later by

A. Cayley.

With a little modi�
ation, Ja
obi's method 
an also be used for proving the generalized Pon
elet theorem. In order

to do so, �x a point E on the 
ir
le e and de�ne the height of the lateral surfa
e at the point P as the ratio of the

tangents drawn to the 
ir
le a from the points E and P : h(P ) =
EEA

PPA

, whi
h di�ers only by the 
onstant fa
tor EEA

from the above de�ned height. The motivation for this de�nition is that it makes the height universal, that is ea
h
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element of the pen
il determines the same surfa
e. This is explained by one of the results obtained above. We have

seen that if a, b, e are three elements of a pen
il of 
ir
les then the ratios of the powers of di�erent points of e with

respe
t to a and b (i.e. the ratios of the tangents, in our 
ase) are equal:

EEA

EEB

=
PPA

PPB

, that is,

EEA

PPA

=
EEB

PPB

.

If I is the area of the whole surfa
e and J1, J2, . . . , Jn are the areas over the ar
s determined by the tangents drawn

to the elements a1, a2, . . . , an of the pen
il then the 
ondition for the polygon to 
lose up is des
ribed by the equation

J1 + J2 + · · ·+ Jn = mI.

The validity of this equation is 
learly independent of the 
hoi
e of the starting point.

Problems

1. a) Show that the 
entres of the members of any pen
il of 
ir
les are 
ollinear.

b) Let the radius of one 
ir
le of a pen
il be R, let the radius of another, smaller 
ir
le be r, and let d be the

distan
e of their 
entres. Prove that the value of

k =

√

4Rd

(R+ d)
2 − r2

is independent of the 
hoi
e of the smaller 
ir
le.

c) Show that the pen
il is 
on
entri
, non-interse
ting, tangent and interse
ting, respe
tively if k = 0; 0 < k < 1;
k = 1; 1 < k.

2. Prove that in non-interse
ting, tangent and interse
ting pen
ils, respe
tively there are 2; 1; 0 one point 
ir
les,

i.e. �gures of equation

(x − u)2 + (y − v)2 = 0.

3. The 
ir
ums
ribed 
ir
le of a triangle ABC is e and its in
ir
le is a. Their radii are R and r, respe
tively, and

the distan
e of their 
entres is d. The points of tangen
y on the in
ir
le are X , Y , Z.

a) Prove that the inversion of the 
ir
le e with respe
t to the 
ir
le a maps e onto a 
ir
le of radius R′ =
Rr2

R2 − d2
,

and its 
entre's distan
e from the 
entre of a is d′ =
dr2

R2 − d2
.

b) Prove that the inversion with respe
t to the 
ir
le a maps the points A, B, C onto the midpoints of the sides of

the triangle XY Z.

c) Prove Euler's theorem.

d) Prove Pon
elet's theorem for n = 3.

4. Find the formula 
orresponding to Euler's theorem for the 
ir
ums
ribed and es
ribed 
ir
les of the triangle.

5. a) Prove that the equation of the element of the pen
il generated by the 
ir
les a(x, y) = 0, b(x, y) = 0 that

passes through the point P (ξ, η) is
b(ξ, η)a(x, y)− a(ξ, η)b(x, y) = 0.

b) Prove that the equation of the line tou
hing the 
ir
le of equation (1) at its point P (ξ, η) is

(ξ − ua)(x − ξ) + (η − va)(y − η) = 0.

c) Prove that the points of tangen
y on the tangents drawn form a point to the elements of a pen
il of 
ir
les form

a 
ubi
 
urve.

6. a) Express the equation 
orresponding to (1) in homogeneous 
oordinates, and show that the ideal and imaginary

points (1, i, 0) and (1,−i, 0), where i2 = −1, lie on the 
ir
le.

b) Prove that a nonempty irredu
ible quadrati
 
urve of real 
oe�
ients is a 
ir
le if and only if it 
ontains the

points (1, i, 0) and (1,−i, 0).3

Bibliography

3

The introdu
tion of 
omplex numbers into geometry is also a result of Pon
elet's 
onsiderations. He pointed out that if 
omplex


oordinates are allowed then any two quadrati
 
urves have two 
ommon points. If those two points are proje
ted to the points (1, i, 0)
and (1,−i, 0) then the two 
urves are mapped onto two 
ir
les. Thus it is enough to prove Pon
elet's theorem for two 
ir
les.
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