1. Let us denote by λ (where $\lambda>1$) the ratio of the sides of a parallelogram. Find, in terms of λ, the maximum possible measure of the acute angle formed by the diagonals. 2. Consider the diagonals of a convex n-gon. Upon omitting any $n-3$ of them, prove that among the remaining diagonals there are $n-3$ ones that do not intersect inside the polygon. On the other hand, show that one can always omit $n-2$ diagonals so that the previous assertion is not true anymore. 3. We are given the sets $H_{1}, H_{2}, \ldots, H_{n}$. The set $H_{k}(k=1,2, \ldots, n)$ consists of k pairwise disjoint intervals of the real line. Prove that among the intervals that form the sets H_{k} one can find [$\left.n+1\right) / 2$] pairwise disjoint ones, each of which belongs to a different set H_{k}. ([x] denotes the largest integer that is less than or equal to x.)
