
Problem 1. The sides of an a
ute-angled triangle are pairwise di�erent, its ortho
entre is M , the 
entre of its

ins
ribed 
ir
le is K, and the 
entre of its 
ir
ums
ribed 
ir
le is O. Prove that if a 
ir
le passes through the points K,

O, M and a vertex of the triangle, then it also passes through another vertex.

Solution 1. The points K, O, M lie in the interior of the triangle. If the verti
es are denoted by A, B, C and

the 
orresponding angles by α, β, γ, then ∠BAM = 90◦ − β = ∠CAO. The se
ond equality is true be
ause in the

isos
eles triangle AOC, ∠AOC = 2β, sin
e the angle at the 
entre is twi
e the angle at the 
ir
umferen
e. The line

AK bise
ts the angle BAC, so the rays AM and AO lie symmetri
ally on either side of the ray AK. The three rays

do not 
oin
ide (or else the triangle would be isos
eles). Thus the line segments KM and KO subtend equal angles

at the vertex A, and the line AK separates the points M and O. It is 
lear that this statement remains valid if we

repla
e A with any other vertex of the triangle.

Assume now that the points A, M , K, O are 
on
y
li
. Being so, the 
onverse of the theorem about angles at the


ir
umferen
e implies that the line segments KM and KO are equal. As we have seen, they subtend equal angles at

the verti
es of the triangle. Let us examine, therefore, the lo
us of the points P where the two edges subtend equal

angles.

Figure 1

If that angle is ϕ for a given P , then P lies on one of the two ar
s where the segment KM subtends an angle ϕ,

and also on one of the two ar
s where the segment KO subtends an angle ϕ. Let these ar
s be i and j, respe
tively.

We will 
all the ar
 i an inward ar
 if the ar
 lies on the same side of the line KM as the point O, and an outward

ar
 if they lie on the opposite side. There will be no ambiguity, sin
e the points K, O, M 
annot be 
ollinear. This

terminology 
an be extended to the ar
 j as well, if we inter
hange the roles of points O and M .

If both i and j are outward ar
s, their interse
tion (if any) lies on the perpendi
ular bise
tor f of the line segment

MO, sin
e the two ar
s are 
ongruent due to KM = KO. The same holds if both ar
s are inward ones. The only

ex
eption is the 
ase when the two ar
s have at least two further 
ommon points in addition to their 
ommon

endpoint K. This happens if and only if the two ar
s are in
ident to the same 
ir
le, that is the 
ir
le through the

points K, O, M .

Is it possible that we have one outward ar
 (say, the ar
 i) and one inward ar
? In that 
ase, the two ar
s interse
t

ea
h other if and only if ϕ is smaller than the angle KMO. Then j interse
ts the extension of the ray OM beyond M .

At that point KM and KO subtend equal angles, so that point must be the interse
tion of the two ar
s. Su
h a point,

however, 
annot be a vertex of the triangle ABC, sin
e a 
ir
le through that vertex and K would not separate the

points M and O.

Figure 2

We 
an 
on
lude that ea
h vertex of the triangle lies either on the line f or on the 
ir
le k. Sin
e the point K lies

on f , at most one of the verti
es may lie on f , and thus at least two of them must lie on the 
ir
le k. The 
laim is

hen
e proved.

1



Solution 2 (based on the solution by Rá
z, Béla András). Let A, B, C denote the verti
es of the triangle, and

assume that the points A, M , K, O are on a 
ir
le k. Note that this 
ir
le is unique sin
e the four points are all

di�erent. A

ording to the previous solution, KM = KO, that is, K lies on the perpendi
ular bise
tor f of the line

segment MO. Note that the points B, O and M 
annot be 
ollinear, or else AB and BC would be equal.

Consider the interse
tion L of the angle bise
tor e of the angle MBO with the 
ir
le ℓ 
ir
ums
ribed about the

triangle MBO. The 
onverse of the theorem about the angles subtended at the 
ir
umferen
e of a 
ir
le implies

ML = LO, that is, the point L lies on f , too. As shown in the �rst part of the previous proof, the point K also lies

on the lines e and f . Therefore, if the lines e and f do not 
oin
ide, then K = L, that is, the points B, O, K, M all

lie on the 
ir
le ℓ. Sin
e the points K, O, M are di�erent, k and ℓ must be identi
al, and thus k passes through the

vertex B as well.

Figure 3

If the lines e and f 
oin
ide, then f passes through the vertex B, that is, BM = BO = R, where R is the radius

of the 
ir
um
ir
le of the triangle ABC. If MC is the perpendi
ular proje
tion of M on the side AB, then

BMC = BC cosβ = 2R sinα cosβ,

that is,

BM =
BMC

sinα
= 2R cosβ.

Thus cosβ =
1

2
, β = 60◦. A simple 
al
ulation yields that the edge AC subtends a 120◦ angle at ea
h of the points M ,

K and O. Sin
e the points M , K, O lie on the same side of the line AC, it is the points A, M , K, O, C that lie on

one 
ir
le this time, and that 
ir
le must be identi
al to k.

Figure 4

Solution 3 (based on the solution byHarangi, Viktor). As seen above, the pointsK,O,M are di�erent,KM = KO

and the line OM does not pass through any vertex of the triangle. Assume that the line OM separates the vertex A

from the other two. Then the perpendi
ular bise
tor f of the line segment OM (whi
h passes through the point K)

must interse
t the side BC, otherwise one of the points M and O (say, M) would lie 
loser to ea
h of the points B

and C than the other one. Sin
e K lies on both the bise
tor of the angle MBO and that of the angle MCO, and an

angle bise
tor divides the opposite side in the ratio of the adja
ent sides, it follows that both of the lines BK and CK

would interse
t the line segment OM 
loser to its endpoint M , and thus K would also lie 
loser to M than O. That

is 
ontradi
tion.
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Thus one of the verti
es B and C lies on the same side of the line f as the point M , and the other one lies on

the same side as O. Without loss of generality, we may assume that BM ≤ BO and CM ≥ CO, where at least one

of these relations is a stri
t inequality. Therefore the line BK interse
ts the line segment MO 
loser to M , and the

line CK interse
ts it 
loser to O. (One, but not both of the interse
tions may 
oin
ide with the midpoint of the edge

MO). Consequently, the line OM separates the point K from the verti
es B and C. We 
an establish, therefore, that

both verti
es B and C lie between the arms of the angle MKO.

Re�e
t now the point C in the line f to get the point C′
. Sin
e ∠KC′O = ∠KCM = ∠KCO, and C and C′

are

on the same side of the line KO, the points K, C, C′
, O are 
learly 
on
y
li
, and for symmetry reasons their 
ir
le

also passes through the point M . Thus C lies on the 
ir
ums
ribed 
ir
le of the triangle KOM . For the same reason,

vertex B is also in
ident to this 
ir
le but vertex A is not, sin
e the line MO does not separate the points A and K.

That 
ompletes the proof.

Figure 5

Remarks. Is it a ne
essary 
ondition that the sides of the triangle are pairwise di�erent? If the triangle is isos
eles, then the

points K, O, M are 
ollinear. A 
ir
le 
an pass through all these points only if two of them 
oin
ide, that is, if the triangle is

equilateral. Thus it would have been enough to require that the triangle is a non-equilateral a
ute-angled triangle.

If the triangle is not a
ute-angled, it 
annot be equilateral either, and su
h a restri
tion is not needed. If the triangle is

right-angled, the point M 
oin
ides with a vertex. Thus if a 
ir
le passes through the points K, O, M , then it ne
essarily

passes through a vertex of the triangle. However, it 
an pass through another vertex only if the third angle is 60
◦

. (Why?) The

statement is hen
e not true for right triangles. And what about an obtuse triangle? In that 
ase the solution is more 
ompli
ated,

but the 
laim still holds.

Exer
ises

1) The ortho
entre of an obtuse-angled triangle is M , the 
entre of its ins
ribed 
ir
le is K, and the 
entre of its


ir
ums
ribed 
ir
le is O. Prove that if a 
ir
le passes through the points K, O, M and a vertex of the triangle, then

it also passes through another vertex.

2) If a triangle is not right-angled, then there exists a 
ir
le passing through the points K, O, M and a vertex if

and only if one angle of the triangle is 60◦.

Problem 2. Consider the sequen
e of the Fibona

i numbers de�ned by the re
ursion

f1 = f2 = 1, fn = fn−1 + fn−2 (n ≥ 3).

Assume that the fra
tion

a

b
, where a and b are positive integers, is smaller than one of the fra
tions

fn

fn−1

and

fn+1

fn
but is greater than the other. Show that b ≥ fn+1.

Solution 1 (based on the solutions by Ko
sis, Albert Tihamér and Zsbán, Ambrus). The proof is by indu
tion

on n. Let us 
he
k the 
laim �rst for n = 2 and 3. For n = 2, the 
ondition is 1 <
a

b
< 2, and hen
e b ≥ 2 = f3. For

n = 3,
3

2
<

a

b
< 2 implies b ≥ 3 = f4. Assume now that m ≥ 3 and the statement is already proved for 2 ≤ n ≤ m.

Let n = m+ 1, and assume that

fn

fn−1

<
fn+1

fn
, and the positive integers a and b satisfy

fm+1

fm
=

fn

fn−1

<
a

b
<

fn+1

fn
=

fm+2

fm+1

.

Redu
ing the terms in the inequality by 1, we get

fm−1

fm
=

fm+1 − fm

fm
<

a− b

b
<

fm+2 − fm+1

fm+1

=
fm

fm+1

.

Sin
e there are positive numbers at both ends (and thus in the middle as well), the inequality is reversed when swit
hing

to the re
ipro
als:

fm

fm−1

>
b

a− b
>

fm+1

fm
.
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It follows from the assumption that a − b ≥ fm+1. If the terms are redu
ed by 1 on
e more and the re
ipro
als are

taken, the inequality

fm−1

fm−2

<
a− b

2b− a
<

fm

fm−1

is obtained, and then it follows from the assumption that 2b− a ≥ fm.

Adding the two results yields

b = (2b− a) + (a− b) ≥ fm + fm+1 = fm+2 = fn+1,

thus the statement is true for n = m+ 1.
The same reasoning applies when

fm+1

fm
=

fn

fn−1

>
a

b
>

fn+1

fn
=

fm+2

fm+1

,

only one should inter
hange the roles of the relations �<� and �>�.

Solution 2 (based on the solution by Egri, Attila). Let us assume that

fn

fn−1

<
a

b
<

fn+1

fn
.

Multiplying through the inequality by the positive quantity bfn−1fn we get

bf2
n < afn−1fn < bfn−1fn+1.

The di�eren
e between the �rst two numbers is fn · (afn−1 − bfn), a positive integer divisible by fn, whose value is

therefore at least fn. For similar reasons, the di�eren
e fn−1 · (bfn+1 − afn) between the last two numbers is at least

fn−1. Therefore the di�eren
e between the �rst and last numbers is:

b
(

fn−1fn+1 − f2
n

)

≥ fn + fn−1 = fn+1.

Hen
e it is enough to prove that kn = fn−1fn+1 − f2
n = 1.

If n = 2 then kn = 1, and if n = 3 then kn = −1. If we go on 
he
king the values of kn, we �nd alternating values

of +1 and −1, that is, kn = (−1)
n
. This is true for n = 2, and if it holds for some integer n ≥ 2, then it follows that

kn+1 = fnfn+2 − f2
n+1 = fn(fn + fn+1)− f2

n+1

= f2
n − fn+1(fn+1 − fn) = f2

n − fn+1fn−1 = −kn = −(−1)
n
= (−1)

n+1
.

Sin
e in our 
ase b and fn+1 are both positive, kn must also be positive and thus its value is 1, as we set out to

prove. A similar argument works if

fn

fn−1

>
a

b
>

fn+1

fn
.

Remark. This argument also yields the general statement that if a, b, x, y, z, v are positive integers, yz − xv = 1 and

x

y
<

a

b
<

z

v
, then b ≥ y + v.

Solution 3. Assume for simpli
ity that n is even. A

ording to the relation fn−1fn+1 − f2
n = (−1)n used in the

previous solution, the inequality

fn

fn−1

<
a

b
<

fn+1

fn

holds in this form. The di�eren
e

a

b
−

fn

fn−1

=
afn−1 − bfn

bfn−1

is positive, so being an integer, the numerator is at least 1. Therefore,

1

bfn−1

≤
a

b
−

fn

fn−1

<
fn+1

fn
−

fn

fn−1

=
1

fn−1fn
,

and hen
e bfn−1 > fn−1fn, that is, b > fn.

Consider the fra
tion

fn+2

fn+1

whi
h is smaller than

fn+1

fn
. If

fn+2

fn+1

<
a

b
<

fn+1

fn
,
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then a reasoning similar to the one above yields

1

bfn
≤

fn+1

fn
−

a

b
<

fn+1

fn
−

fn+2

fn+1

=
1

fn+1fn
,

and therefore b > fn+1.

If

a

b
=

fn+2

fn+1

, then b ≥ fn+1 for fn+2 and fn+1 are relatively prime. This is shown as follows: if a positive integer d

divides both fn+2 and fn+1, then it also divides their di�eren
e fn = fn+2−fn+1, and so on, d divides all the numbers

fn−1, fn−2, . . . , f1. Sin
e f1 = 1, d must be 1.

There remains the 
ase

fn

fn−1

<
a

b
<

fn+2

fn+1

.

Consider the di�eren
e ℓn = fn+2fn−1 − fnfn+1. By indu
tion we get ℓn = (−1)n, and therefore

1

bfn−1

≤
a

b
−

fn

fn−1

<
fn+2

fn+1

−
fn

fn−1

=
1

fn+1fn−1

,

and again we 
an 
on
lude that b > fn+1.

A similar argument yields the 
laim if n is odd.

Several papers used the theory of the Farey sequen
e. Here is an example.

Solution 4. (based on the solution by Pallos, Péter). Starting from the sequen
e F1 =

(

0

1
,
1

1

)

, pro
eed using the

following re
urren
e. Having de�ned the sequen
e Fn, insert the fra
tion
a+ c

b + d
between any two 
onse
utive terms

a

b

and

c

d
of Fn. If the sequen
e Fn is stri
tly in
reasing, then so is the next sequen
e Fn+1. The solution is based on

the following two theorems: 1. Ea
h fra
tion appears in the sequen
e Fn in lowest terms. 2) Every rational number

between 0 and 1 belongs to some sequen
e Fn.

Note that

fn−1

fn
and

fn

fn+1

are 
onse
utive terms of the sequen
e Fn. This is the 
ase if n = 2, and if

fn−1

fn
and

fn

fn+1

are 
onse
utive terms of Fn for an integer n ≥ 2, then the fra
tion inserted between them in the next sequen
e

Fn+1 is equal to

fn−1 + fn

fn + fn+1

=
fn+1

fn+2

,

therefore the statement is also true for n+ 1.

Sin
e fn is stri
tly in
reasing, the fra
tion

a

b
is greater than 1. A

ording to the above properties, the fra
tion

b

a

thus o

urs in some sequen
e Fm, redu
ed to lowest terms in a form

b′

a′
. Sin
e

b′

a′
is greater then one of the fra
tions

fn−1

fn
and

fn

fn+1

and smaller than the other one, 
learly m > n. The 
onstru
tion of the sequen
es Fm implies that

the numerator of every fra
tion inserted between

fn−1

fn
and

fn

fn+1

is at least fn−1 + fn, and hen
e

b ≥ b′ ≥ fn−1 + fn = fn+1.

The proof is hen
e 
omplete.

Remark. In this solution, a sledgehammer was used to 
ra
k a nut, sin
e the proofs of the stated properties of Farey sequen
es

are a
tually based on 
onsiderations 
ontained in the previous solutions.

Problem 3. Prove that the set of edges formed by the sides and diagonals of a 
onvex 3n-gon 
an be partitioned

into sets of three edges, su
h that the edges in ea
h triple form a triangle.

Solution 1 (based on the solution by Csikvári, Péter). Let us assign to the verti
es of the polygon the numbers

0, 1, 2, . . . , 3n − 1, written in base-3 notation. Ea
h number 
onsists of n digits at most. If the number of digits is less

than n, then adding leading zeros we have a sequen
e of n digits of 0, 1 or 2. In other words, we assign to the verti
es

of the polygon those sequen
es of length n whose terms are either 0, 1, or 2.

Consider the triangles satisfying the following 
ondition: Whi
hever position is 
hosen from the �rst to the n-th,

the three numbers assigned to the verti
es of the triangle either have the same digit at the given position, or all three

of them have di�erent digits at that position. It is 
lear that for any pair of verti
es of the polygon there is exa
tly

one additional vertex available su
h that the three of them satisfy the above 
ondition. Thus every single side and
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diagonal of our polygon is the side of exa
tly one su
h triangle, and hen
e the sets of three edges forming the sides of

su
h triangles will have the required property.

Solution 2. The proof is by indu
tion on n. The 
laim is obvious if n = 1. Assume that the statement is already

proved for some positive integer n and 
onsider a 
onvex 3n+1
-gon whose verti
es are Ai, Bi, Ci where 1 ≤ i ≤ 3n.

By the indu
tion hypothesis the edges 
onne
ting the verti
es Ai 
an be divided into triplets as required. The same is

true for the edges 
onne
ting the verti
es Bi and for those 
onne
ting the verti
es Ci.

The rest of the edges 
an be grouped as follows: The edges AiBj , BjCk and CkAi are put together whenever

i + j + k is divisible by 3n. It is 
lear that three su
h edges form a triangle. On the other hand, if any two of the

numbers i, j, k are �xed, the divisibility 
ondition uniquely determines the third one, and hen
e every edge o

urs in

exa
tly one triplet. The statement is hen
e true for n+ 1, and the indu
tion step is 
omplete.

Solution 3 (based on the solution by Steller, Gábor). As in the previous solutions, the task is to �nd triangles

su
h that their verti
es are verti
es of the original polygon, and ea
h given edge is a side of one and only one triangle.

In other words, any pair of triangles have at most one vertex in 
ommon. We also use mathemati
al indu
tion to prove

that this 
an be done. Assume that we have found suitable triangles PiPjPk for a polygon P1P2 . . . P3n . It follows from

the 
onditions that the number of triangles is one third of the total number of edges, that is,

1

3

(

3n

2

)

=
3n−1(3n − 1)

2
.

Let Ai, Bi, Ci (1 ≤ i ≤ 3n) denote the verti
es of a 
onvex 3n+1
-gon. Consider the triangles AiBiCi where

1 ≤ i ≤ 3n, and 
all them triangles of the �rst kind. Consider now ea
h triangle PiPjPk of the above partition, and


onstru
t the triangles AiAjAk, BiBjBk, CiCjCk (se
ond kind) and the triangles AiBjCk, AiCjBk, BiAjCk, BiCjAk,

CiAjBk, CiBjAk (third kind). One gets

9 ·
3n−1(3n − 1)

2
+ 3n =

3n(3n+1 − 3)

2
+ 3n =

3n(3n+1 − 1)

2

triangles altogether, whi
h is equal to the number of triangles needed for a suitable partition. Therefore, it is enough

to show that any pair of triangles listed above have at most one vertex in 
ommon.

It is 
lear that triangles of the �rst kind have no vertex in 
ommon at all, and they 
annot have more than one


ommon vertex with any triangle of the se
ond kind either. Two triangles of the se
ond kind either have no 
ommon

vertex, or by the indu
tion hypothesis they have at most one su
h vertex. Triangles of the third kind may have at

most one vertex in 
ommon with triangles of the other two kinds. Finally, two triangles of the third kind may have

at most one 
ommon vertex. This follows from the indu
tion hypothesis, sin
e if, say, AiBjCk and AiBjCk′
are both

triangles of the third kind, then the partition of the original 3n-gon must have 
ontained both the triangles PiPjPk

and PiPjPk′
. That 
an only happen if k = k′.

Solution 4 (based on the solution by Harangi, Viktor). We 
an assume without the loss of generality that the

polygon is regular. This opens the way for a geometri
 argument. The solution is on
e again by indu
tion on n. For

n = 1, the statement is trivial. Assume that the problem is already solved for some n ≥ 1, and 
onsider a regular

3n+1
-gon P . Label the verti
es with the three letters A, B, C, going around the polygon in some dire
tion. Vertex A

is always followed by B, then C and then A again. The verti
es labelled identi
ally form three 3n-gons, and the edges

of ea
h 
an be partitioned as required. There remains to take 
are of the edges 
onne
ting di�erently labelled verti
es.

Consider the symmetry axis t of the polygon through a vertex marked A. Sin
e P has an odd number of verti
es,

this axis does not 
ontain any other vertex. The image after a re�e
tion of a vertex marked A about the axis t is

another vertex marked A, that of a re�e
tion of a vertex marked B is a vertex marked C, and that of a re�e
tion of

a vertex marked C is a vertex marked B. Similarly, if the axis is through a vertex marked B or C, it is the verti
es

marked B and C, respe
tively, that map onto verti
es of the same kind.

We pro
eed now as follows: the edges of a triangle of type ABC are grouped together if and only if the triangle is

symmetri
al about the axis of the polygon passing through the vertex A. We show that every edge of type AB, BC

or CA of the polygon P is used exa
tly on
e, whi
h means that the indu
tion works.

An edge of type AB belongs exa
tly to one su
h triangle, the one whose third vertex is obtained by re�e
ting B

about the axis through A. The image will be a vertex of type C as said above. By symmetry, ea
h edge of type AC

belongs to exa
tly one triangle as well. Finally, 
onsider an edge of type BC. Its perpendi
ular bise
tor is a symmetry

axis of P , so it passes through a parti
ular vertex of P , whi
h must be a vertex of type A for the reasons mentioned

above. That vertex, and only that may be the third vertex of the required triangle.

Finally, let us examine the solution that reveals the genuine geometri
al (or algebrai
, if you like) ba
kground of the problem.

The required partition 
an be a

omplished in terms of the lines of the n-dimensional a�ne spa
e over the three-element �eld.

The argument below will hopefully reveal the point of the story.

Solution 5 (based on the solution by Rá
z, Béla András). Let p be an arbitrary prime number. We are going to

prove the following general theorem: The edges of a 
omplete graph on pn verti
es 
an be partitioned into sets forming

the edges of a 
omplete graph on p points ea
h. For p = 3, this is simply the original problem. See on the front page.
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Consider the sequen
es a = (a1, a2, . . . , an) where, for every i, ai is a non-negative integer less than p. The number

of su
h sequen
es is 
learly pn. They represent the points of the n-dimensional a�ne spa
e over the p-element �eld,

whi
h we will identify with the verti
es of the given 
omplete graph. We may also think of them as ve
tors, similar

to the way the position ve
tors are identi�ed with their endpoints in 3-dimensional Eu
lidean spa
e. The sum of two

points a and v is de�ned as

a+ v = (a1 + v1, a2 + v2, . . . , an + vn),

where the sums ai+ vi are meant modulo p. We 
an also say that the point a is shifted by the ve
tor v. The di�eren
e

between two points 
an be de�ned in a similar way, and a+ (b− a) = b will be true. α times a point (or ve
tor) v is

de�ned as the point (or ve
tor)

αv = (αv1, αv2, . . . , αvn),

where α ∈ {0, 1, . . . , p− 1} and αvi is also 
onsidered modulo p. If the integers α and β are 
ongruent modulo p, αv

and βv de�ne the same point.

How 
an we de�ne a line through two di�erent points a and b? Let us add the multiples of the ve
tor v = b−a to

the point a, as we would do in the Eu
lidean 
ase. It is easy to show that any su
h line 
onsists of p distin
t points. On

one hand, there may be at most p points on the line sin
e it is enough to add the ve
tor v to the point a 0, 1, . . . , p− 1
times. On the other hand, if a+ jv = a+ kv for two di�erent numbers j, k ∈ {0, 1, . . . , p− 1} then jvi = kvi modulo p

for ea
h 
oordinate vi of v. Thus (k− j)vi is divisible by p, whi
h 
an only happen if every vi is zero. That 
ontradi
ts

a and b being di�erent points.

Any pair of distin
t points determine a line passing through exa
tly p points. The 
ru
ial observation is that any

pair of di�erent lines have at most one point in 
ommon, or in other words, any pair of points belong to exa
tly one

line. Hen
e the statement follows: the 
omplete graphs on p points to be found 
orrespond to the di�erent lines.

Exer
ises

1) Prove that the roles of a and b 
an be inter
hanged in the de�nition of the line through a and b.

2) Prove that if c = a + α(b − a) and d = a + β(b − a) are two di�erent points of the line through the points a

and b, then a and b lie on the line determined by c and d. How does this imply the �
ru
ial� observation mentioned

in the solution?

3) How 
an we de�ne two lines to be parallel?

4) How 
an planes be de�ned? How many points will a plane have? What would the set of 
ommon points of two

planes look like?

5) What problems would we fa
e if, formulating the statement of the above general theorem with a 
omposite

number m in the pla
e of the prime p, we tried to apply the same ideas to obtain a proof?
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