
Problem 1. The sides of an aute-angled triangle are pairwise di�erent, its orthoentre is M , the entre of its

insribed irle is K, and the entre of its irumsribed irle is O. Prove that if a irle passes through the points K,

O, M and a vertex of the triangle, then it also passes through another vertex.

Solution 1. The points K, O, M lie in the interior of the triangle. If the verties are denoted by A, B, C and

the orresponding angles by α, β, γ, then ∠BAM = 90◦ − β = ∠CAO. The seond equality is true beause in the

isoseles triangle AOC, ∠AOC = 2β, sine the angle at the entre is twie the angle at the irumferene. The line

AK bisets the angle BAC, so the rays AM and AO lie symmetrially on either side of the ray AK. The three rays

do not oinide (or else the triangle would be isoseles). Thus the line segments KM and KO subtend equal angles

at the vertex A, and the line AK separates the points M and O. It is lear that this statement remains valid if we

replae A with any other vertex of the triangle.

Assume now that the points A, M , K, O are onyli. Being so, the onverse of the theorem about angles at the

irumferene implies that the line segments KM and KO are equal. As we have seen, they subtend equal angles at

the verties of the triangle. Let us examine, therefore, the lous of the points P where the two edges subtend equal

angles.

Figure 1

If that angle is ϕ for a given P , then P lies on one of the two ars where the segment KM subtends an angle ϕ,

and also on one of the two ars where the segment KO subtends an angle ϕ. Let these ars be i and j, respetively.

We will all the ar i an inward ar if the ar lies on the same side of the line KM as the point O, and an outward

ar if they lie on the opposite side. There will be no ambiguity, sine the points K, O, M annot be ollinear. This

terminology an be extended to the ar j as well, if we interhange the roles of points O and M .

If both i and j are outward ars, their intersetion (if any) lies on the perpendiular bisetor f of the line segment

MO, sine the two ars are ongruent due to KM = KO. The same holds if both ars are inward ones. The only

exeption is the ase when the two ars have at least two further ommon points in addition to their ommon

endpoint K. This happens if and only if the two ars are inident to the same irle, that is the irle through the

points K, O, M .

Is it possible that we have one outward ar (say, the ar i) and one inward ar? In that ase, the two ars interset

eah other if and only if ϕ is smaller than the angle KMO. Then j intersets the extension of the ray OM beyond M .

At that point KM and KO subtend equal angles, so that point must be the intersetion of the two ars. Suh a point,

however, annot be a vertex of the triangle ABC, sine a irle through that vertex and K would not separate the

points M and O.

Figure 2

We an onlude that eah vertex of the triangle lies either on the line f or on the irle k. Sine the point K lies

on f , at most one of the verties may lie on f , and thus at least two of them must lie on the irle k. The laim is

hene proved.
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Solution 2 (based on the solution by Ráz, Béla András). Let A, B, C denote the verties of the triangle, and

assume that the points A, M , K, O are on a irle k. Note that this irle is unique sine the four points are all

di�erent. Aording to the previous solution, KM = KO, that is, K lies on the perpendiular bisetor f of the line

segment MO. Note that the points B, O and M annot be ollinear, or else AB and BC would be equal.

Consider the intersetion L of the angle bisetor e of the angle MBO with the irle ℓ irumsribed about the

triangle MBO. The onverse of the theorem about the angles subtended at the irumferene of a irle implies

ML = LO, that is, the point L lies on f , too. As shown in the �rst part of the previous proof, the point K also lies

on the lines e and f . Therefore, if the lines e and f do not oinide, then K = L, that is, the points B, O, K, M all

lie on the irle ℓ. Sine the points K, O, M are di�erent, k and ℓ must be idential, and thus k passes through the

vertex B as well.

Figure 3

If the lines e and f oinide, then f passes through the vertex B, that is, BM = BO = R, where R is the radius

of the irumirle of the triangle ABC. If MC is the perpendiular projetion of M on the side AB, then

BMC = BC cosβ = 2R sinα cosβ,

that is,

BM =
BMC

sinα
= 2R cosβ.

Thus cosβ =
1

2
, β = 60◦. A simple alulation yields that the edge AC subtends a 120◦ angle at eah of the points M ,

K and O. Sine the points M , K, O lie on the same side of the line AC, it is the points A, M , K, O, C that lie on

one irle this time, and that irle must be idential to k.

Figure 4

Solution 3 (based on the solution byHarangi, Viktor). As seen above, the pointsK,O,M are di�erent,KM = KO

and the line OM does not pass through any vertex of the triangle. Assume that the line OM separates the vertex A

from the other two. Then the perpendiular bisetor f of the line segment OM (whih passes through the point K)

must interset the side BC, otherwise one of the points M and O (say, M) would lie loser to eah of the points B

and C than the other one. Sine K lies on both the bisetor of the angle MBO and that of the angle MCO, and an

angle bisetor divides the opposite side in the ratio of the adjaent sides, it follows that both of the lines BK and CK

would interset the line segment OM loser to its endpoint M , and thus K would also lie loser to M than O. That

is ontradition.
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Thus one of the verties B and C lies on the same side of the line f as the point M , and the other one lies on

the same side as O. Without loss of generality, we may assume that BM ≤ BO and CM ≥ CO, where at least one

of these relations is a strit inequality. Therefore the line BK intersets the line segment MO loser to M , and the

line CK intersets it loser to O. (One, but not both of the intersetions may oinide with the midpoint of the edge

MO). Consequently, the line OM separates the point K from the verties B and C. We an establish, therefore, that

both verties B and C lie between the arms of the angle MKO.

Re�et now the point C in the line f to get the point C′
. Sine ∠KC′O = ∠KCM = ∠KCO, and C and C′

are

on the same side of the line KO, the points K, C, C′
, O are learly onyli, and for symmetry reasons their irle

also passes through the point M . Thus C lies on the irumsribed irle of the triangle KOM . For the same reason,

vertex B is also inident to this irle but vertex A is not, sine the line MO does not separate the points A and K.

That ompletes the proof.

Figure 5

Remarks. Is it a neessary ondition that the sides of the triangle are pairwise di�erent? If the triangle is isoseles, then the

points K, O, M are ollinear. A irle an pass through all these points only if two of them oinide, that is, if the triangle is

equilateral. Thus it would have been enough to require that the triangle is a non-equilateral aute-angled triangle.

If the triangle is not aute-angled, it annot be equilateral either, and suh a restrition is not needed. If the triangle is

right-angled, the point M oinides with a vertex. Thus if a irle passes through the points K, O, M , then it neessarily

passes through a vertex of the triangle. However, it an pass through another vertex only if the third angle is 60
◦

. (Why?) The

statement is hene not true for right triangles. And what about an obtuse triangle? In that ase the solution is more ompliated,

but the laim still holds.

Exerises

1) The orthoentre of an obtuse-angled triangle is M , the entre of its insribed irle is K, and the entre of its

irumsribed irle is O. Prove that if a irle passes through the points K, O, M and a vertex of the triangle, then

it also passes through another vertex.

2) If a triangle is not right-angled, then there exists a irle passing through the points K, O, M and a vertex if

and only if one angle of the triangle is 60◦.

Problem 2. Consider the sequene of the Fibonai numbers de�ned by the reursion

f1 = f2 = 1, fn = fn−1 + fn−2 (n ≥ 3).

Assume that the fration

a

b
, where a and b are positive integers, is smaller than one of the frations

fn

fn−1

and

fn+1

fn
but is greater than the other. Show that b ≥ fn+1.

Solution 1 (based on the solutions by Kosis, Albert Tihamér and Zsbán, Ambrus). The proof is by indution

on n. Let us hek the laim �rst for n = 2 and 3. For n = 2, the ondition is 1 <
a

b
< 2, and hene b ≥ 2 = f3. For

n = 3,
3

2
<

a

b
< 2 implies b ≥ 3 = f4. Assume now that m ≥ 3 and the statement is already proved for 2 ≤ n ≤ m.

Let n = m+ 1, and assume that

fn

fn−1

<
fn+1

fn
, and the positive integers a and b satisfy

fm+1

fm
=

fn

fn−1

<
a

b
<

fn+1

fn
=

fm+2

fm+1

.

Reduing the terms in the inequality by 1, we get

fm−1

fm
=

fm+1 − fm

fm
<

a− b

b
<

fm+2 − fm+1

fm+1

=
fm

fm+1

.

Sine there are positive numbers at both ends (and thus in the middle as well), the inequality is reversed when swithing

to the reiproals:

fm

fm−1

>
b

a− b
>

fm+1

fm
.
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It follows from the assumption that a − b ≥ fm+1. If the terms are redued by 1 one more and the reiproals are

taken, the inequality

fm−1

fm−2

<
a− b

2b− a
<

fm

fm−1

is obtained, and then it follows from the assumption that 2b− a ≥ fm.

Adding the two results yields

b = (2b− a) + (a− b) ≥ fm + fm+1 = fm+2 = fn+1,

thus the statement is true for n = m+ 1.
The same reasoning applies when

fm+1

fm
=

fn

fn−1

>
a

b
>

fn+1

fn
=

fm+2

fm+1

,

only one should interhange the roles of the relations �<� and �>�.

Solution 2 (based on the solution by Egri, Attila). Let us assume that

fn

fn−1

<
a

b
<

fn+1

fn
.

Multiplying through the inequality by the positive quantity bfn−1fn we get

bf2
n < afn−1fn < bfn−1fn+1.

The di�erene between the �rst two numbers is fn · (afn−1 − bfn), a positive integer divisible by fn, whose value is

therefore at least fn. For similar reasons, the di�erene fn−1 · (bfn+1 − afn) between the last two numbers is at least

fn−1. Therefore the di�erene between the �rst and last numbers is:

b
(

fn−1fn+1 − f2
n

)

≥ fn + fn−1 = fn+1.

Hene it is enough to prove that kn = fn−1fn+1 − f2
n = 1.

If n = 2 then kn = 1, and if n = 3 then kn = −1. If we go on heking the values of kn, we �nd alternating values

of +1 and −1, that is, kn = (−1)
n
. This is true for n = 2, and if it holds for some integer n ≥ 2, then it follows that

kn+1 = fnfn+2 − f2
n+1 = fn(fn + fn+1)− f2

n+1

= f2
n − fn+1(fn+1 − fn) = f2

n − fn+1fn−1 = −kn = −(−1)
n
= (−1)

n+1
.

Sine in our ase b and fn+1 are both positive, kn must also be positive and thus its value is 1, as we set out to

prove. A similar argument works if

fn

fn−1

>
a

b
>

fn+1

fn
.

Remark. This argument also yields the general statement that if a, b, x, y, z, v are positive integers, yz − xv = 1 and

x

y
<

a

b
<

z

v
, then b ≥ y + v.

Solution 3. Assume for simpliity that n is even. Aording to the relation fn−1fn+1 − f2
n = (−1)n used in the

previous solution, the inequality

fn

fn−1

<
a

b
<

fn+1

fn

holds in this form. The di�erene

a

b
−

fn

fn−1

=
afn−1 − bfn

bfn−1

is positive, so being an integer, the numerator is at least 1. Therefore,

1

bfn−1

≤
a

b
−

fn

fn−1

<
fn+1

fn
−

fn

fn−1

=
1

fn−1fn
,

and hene bfn−1 > fn−1fn, that is, b > fn.

Consider the fration

fn+2

fn+1

whih is smaller than

fn+1

fn
. If

fn+2

fn+1

<
a

b
<

fn+1

fn
,
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then a reasoning similar to the one above yields

1

bfn
≤

fn+1

fn
−

a

b
<

fn+1

fn
−

fn+2

fn+1

=
1

fn+1fn
,

and therefore b > fn+1.

If

a

b
=

fn+2

fn+1

, then b ≥ fn+1 for fn+2 and fn+1 are relatively prime. This is shown as follows: if a positive integer d

divides both fn+2 and fn+1, then it also divides their di�erene fn = fn+2−fn+1, and so on, d divides all the numbers

fn−1, fn−2, . . . , f1. Sine f1 = 1, d must be 1.

There remains the ase

fn

fn−1

<
a

b
<

fn+2

fn+1

.

Consider the di�erene ℓn = fn+2fn−1 − fnfn+1. By indution we get ℓn = (−1)n, and therefore

1

bfn−1

≤
a

b
−

fn

fn−1

<
fn+2

fn+1

−
fn

fn−1

=
1

fn+1fn−1

,

and again we an onlude that b > fn+1.

A similar argument yields the laim if n is odd.

Several papers used the theory of the Farey sequene. Here is an example.

Solution 4. (based on the solution by Pallos, Péter). Starting from the sequene F1 =

(

0

1
,
1

1

)

, proeed using the

following reurrene. Having de�ned the sequene Fn, insert the fration
a+ c

b + d
between any two onseutive terms

a

b

and

c

d
of Fn. If the sequene Fn is stritly inreasing, then so is the next sequene Fn+1. The solution is based on

the following two theorems: 1. Eah fration appears in the sequene Fn in lowest terms. 2) Every rational number

between 0 and 1 belongs to some sequene Fn.

Note that

fn−1

fn
and

fn

fn+1

are onseutive terms of the sequene Fn. This is the ase if n = 2, and if

fn−1

fn
and

fn

fn+1

are onseutive terms of Fn for an integer n ≥ 2, then the fration inserted between them in the next sequene

Fn+1 is equal to

fn−1 + fn

fn + fn+1

=
fn+1

fn+2

,

therefore the statement is also true for n+ 1.

Sine fn is stritly inreasing, the fration

a

b
is greater than 1. Aording to the above properties, the fration

b

a

thus ours in some sequene Fm, redued to lowest terms in a form

b′

a′
. Sine

b′

a′
is greater then one of the frations

fn−1

fn
and

fn

fn+1

and smaller than the other one, learly m > n. The onstrution of the sequenes Fm implies that

the numerator of every fration inserted between

fn−1

fn
and

fn

fn+1

is at least fn−1 + fn, and hene

b ≥ b′ ≥ fn−1 + fn = fn+1.

The proof is hene omplete.

Remark. In this solution, a sledgehammer was used to rak a nut, sine the proofs of the stated properties of Farey sequenes

are atually based on onsiderations ontained in the previous solutions.

Problem 3. Prove that the set of edges formed by the sides and diagonals of a onvex 3n-gon an be partitioned

into sets of three edges, suh that the edges in eah triple form a triangle.

Solution 1 (based on the solution by Csikvári, Péter). Let us assign to the verties of the polygon the numbers

0, 1, 2, . . . , 3n − 1, written in base-3 notation. Eah number onsists of n digits at most. If the number of digits is less

than n, then adding leading zeros we have a sequene of n digits of 0, 1 or 2. In other words, we assign to the verties

of the polygon those sequenes of length n whose terms are either 0, 1, or 2.

Consider the triangles satisfying the following ondition: Whihever position is hosen from the �rst to the n-th,

the three numbers assigned to the verties of the triangle either have the same digit at the given position, or all three

of them have di�erent digits at that position. It is lear that for any pair of verties of the polygon there is exatly

one additional vertex available suh that the three of them satisfy the above ondition. Thus every single side and
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diagonal of our polygon is the side of exatly one suh triangle, and hene the sets of three edges forming the sides of

suh triangles will have the required property.

Solution 2. The proof is by indution on n. The laim is obvious if n = 1. Assume that the statement is already

proved for some positive integer n and onsider a onvex 3n+1
-gon whose verties are Ai, Bi, Ci where 1 ≤ i ≤ 3n.

By the indution hypothesis the edges onneting the verties Ai an be divided into triplets as required. The same is

true for the edges onneting the verties Bi and for those onneting the verties Ci.

The rest of the edges an be grouped as follows: The edges AiBj , BjCk and CkAi are put together whenever

i + j + k is divisible by 3n. It is lear that three suh edges form a triangle. On the other hand, if any two of the

numbers i, j, k are �xed, the divisibility ondition uniquely determines the third one, and hene every edge ours in

exatly one triplet. The statement is hene true for n+ 1, and the indution step is omplete.

Solution 3 (based on the solution by Steller, Gábor). As in the previous solutions, the task is to �nd triangles

suh that their verties are verties of the original polygon, and eah given edge is a side of one and only one triangle.

In other words, any pair of triangles have at most one vertex in ommon. We also use mathematial indution to prove

that this an be done. Assume that we have found suitable triangles PiPjPk for a polygon P1P2 . . . P3n . It follows from

the onditions that the number of triangles is one third of the total number of edges, that is,

1

3

(

3n

2

)

=
3n−1(3n − 1)

2
.

Let Ai, Bi, Ci (1 ≤ i ≤ 3n) denote the verties of a onvex 3n+1
-gon. Consider the triangles AiBiCi where

1 ≤ i ≤ 3n, and all them triangles of the �rst kind. Consider now eah triangle PiPjPk of the above partition, and

onstrut the triangles AiAjAk, BiBjBk, CiCjCk (seond kind) and the triangles AiBjCk, AiCjBk, BiAjCk, BiCjAk,

CiAjBk, CiBjAk (third kind). One gets

9 ·
3n−1(3n − 1)

2
+ 3n =

3n(3n+1 − 3)

2
+ 3n =

3n(3n+1 − 1)

2

triangles altogether, whih is equal to the number of triangles needed for a suitable partition. Therefore, it is enough

to show that any pair of triangles listed above have at most one vertex in ommon.

It is lear that triangles of the �rst kind have no vertex in ommon at all, and they annot have more than one

ommon vertex with any triangle of the seond kind either. Two triangles of the seond kind either have no ommon

vertex, or by the indution hypothesis they have at most one suh vertex. Triangles of the third kind may have at

most one vertex in ommon with triangles of the other two kinds. Finally, two triangles of the third kind may have

at most one ommon vertex. This follows from the indution hypothesis, sine if, say, AiBjCk and AiBjCk′
are both

triangles of the third kind, then the partition of the original 3n-gon must have ontained both the triangles PiPjPk

and PiPjPk′
. That an only happen if k = k′.

Solution 4 (based on the solution by Harangi, Viktor). We an assume without the loss of generality that the

polygon is regular. This opens the way for a geometri argument. The solution is one again by indution on n. For

n = 1, the statement is trivial. Assume that the problem is already solved for some n ≥ 1, and onsider a regular

3n+1
-gon P . Label the verties with the three letters A, B, C, going around the polygon in some diretion. Vertex A

is always followed by B, then C and then A again. The verties labelled identially form three 3n-gons, and the edges

of eah an be partitioned as required. There remains to take are of the edges onneting di�erently labelled verties.

Consider the symmetry axis t of the polygon through a vertex marked A. Sine P has an odd number of verties,

this axis does not ontain any other vertex. The image after a re�etion of a vertex marked A about the axis t is

another vertex marked A, that of a re�etion of a vertex marked B is a vertex marked C, and that of a re�etion of

a vertex marked C is a vertex marked B. Similarly, if the axis is through a vertex marked B or C, it is the verties

marked B and C, respetively, that map onto verties of the same kind.

We proeed now as follows: the edges of a triangle of type ABC are grouped together if and only if the triangle is

symmetrial about the axis of the polygon passing through the vertex A. We show that every edge of type AB, BC

or CA of the polygon P is used exatly one, whih means that the indution works.

An edge of type AB belongs exatly to one suh triangle, the one whose third vertex is obtained by re�eting B

about the axis through A. The image will be a vertex of type C as said above. By symmetry, eah edge of type AC

belongs to exatly one triangle as well. Finally, onsider an edge of type BC. Its perpendiular bisetor is a symmetry

axis of P , so it passes through a partiular vertex of P , whih must be a vertex of type A for the reasons mentioned

above. That vertex, and only that may be the third vertex of the required triangle.

Finally, let us examine the solution that reveals the genuine geometrial (or algebrai, if you like) bakground of the problem.

The required partition an be aomplished in terms of the lines of the n-dimensional a�ne spae over the three-element �eld.

The argument below will hopefully reveal the point of the story.

Solution 5 (based on the solution by Ráz, Béla András). Let p be an arbitrary prime number. We are going to

prove the following general theorem: The edges of a omplete graph on pn verties an be partitioned into sets forming

the edges of a omplete graph on p points eah. For p = 3, this is simply the original problem. See on the front page.
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Consider the sequenes a = (a1, a2, . . . , an) where, for every i, ai is a non-negative integer less than p. The number

of suh sequenes is learly pn. They represent the points of the n-dimensional a�ne spae over the p-element �eld,

whih we will identify with the verties of the given omplete graph. We may also think of them as vetors, similar

to the way the position vetors are identi�ed with their endpoints in 3-dimensional Eulidean spae. The sum of two

points a and v is de�ned as

a+ v = (a1 + v1, a2 + v2, . . . , an + vn),

where the sums ai+ vi are meant modulo p. We an also say that the point a is shifted by the vetor v. The di�erene

between two points an be de�ned in a similar way, and a+ (b− a) = b will be true. α times a point (or vetor) v is

de�ned as the point (or vetor)

αv = (αv1, αv2, . . . , αvn),

where α ∈ {0, 1, . . . , p− 1} and αvi is also onsidered modulo p. If the integers α and β are ongruent modulo p, αv

and βv de�ne the same point.

How an we de�ne a line through two di�erent points a and b? Let us add the multiples of the vetor v = b−a to

the point a, as we would do in the Eulidean ase. It is easy to show that any suh line onsists of p distint points. On

one hand, there may be at most p points on the line sine it is enough to add the vetor v to the point a 0, 1, . . . , p− 1
times. On the other hand, if a+ jv = a+ kv for two di�erent numbers j, k ∈ {0, 1, . . . , p− 1} then jvi = kvi modulo p

for eah oordinate vi of v. Thus (k− j)vi is divisible by p, whih an only happen if every vi is zero. That ontradits

a and b being di�erent points.

Any pair of distint points determine a line passing through exatly p points. The ruial observation is that any

pair of di�erent lines have at most one point in ommon, or in other words, any pair of points belong to exatly one

line. Hene the statement follows: the omplete graphs on p points to be found orrespond to the di�erent lines.

Exerises

1) Prove that the roles of a and b an be interhanged in the de�nition of the line through a and b.

2) Prove that if c = a + α(b − a) and d = a + β(b − a) are two di�erent points of the line through the points a

and b, then a and b lie on the line determined by c and d. How does this imply the �ruial� observation mentioned

in the solution?

3) How an we de�ne two lines to be parallel?

4) How an planes be de�ned? How many points will a plane have? What would the set of ommon points of two

planes look like?

5) What problems would we fae if, formulating the statement of the above general theorem with a omposite

number m in the plae of the prime p, we tried to apply the same ideas to obtain a proof?
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