
On 17 O
tober 2003 Eötvös Loránd Physi
al So
iety held in Budapest and in 15 other towns the 55th Eötvös

Competition sin
e the 1949 restart of the event.

In the following we present the problems and their solution.

1. A thin-walled 
ylinder rolls without slipping down a slope with in
line angle of α = 10◦. The mass of the


ylinder wall is M and the mass of the 
losing disks is negligible. The 
ylinder 
ontains mer
ury of mass m. (The

fri
tion between the 
ylinder and the mer
ury is negligible.)

Figure 1

The sloping angle of the mer
ury surfa
e settles at some angle ϕ. Determine this angle ϕ if

a) M ≪ m;
b) M = m.

(Péter Balogh)

Solution. The solution based on dynami
s seems straightforward. For
e is exerted on the mer
ury by the Earth

and by the 
ylinder. On the 
ylinder there is for
e exerted by the Earth, the mer
ury and the slope. Therefore for
e

is exerted on this system (mer
ury + 
ylinder) by the slope and the Earth. As a result the mass 
entre of the system

moves parallel with the slope with an a

eleration of a. Denoting the fri
tion for
e by S, by the law of dynami
s

(se
ond law of motion):

(m+M)g sinα− S = (m+M)a.

The 
ylinder rotates around its mass 
entre, whi
h is also moving, with an angular a

eleration of β = a/R. The
a

elerated rotation is driven by fri
tion for
e S. (Note that the mer
ury does not rotate sin
e the fri
tion is negligible

between the mer
ury and the 
ylinder.) Therefore the dynami
al equation is:

SR = MR2 a

R
,

from where

S = Ma

follows. Substituting this into the dynami
al equation of the motion for the a

eleration we get

a =
m+M

m+ 2M
g sinα.

In spe
ial 
ases

a =



















g sinα, if M ≪ m;
2

3
g sinα, if M = m;

1

2
g sinα, if M ≫ m.

The simplest way we 
an determine the sloping angle of the mer
ury is if we 
onsider that in a system 
o-a

elerating

with the liquid, the surfa
e of the liquid is still perpendi
ular to the resultant for
e of the gravitational and inertial

for
es a
ting on it. The angle ϕ between the surfa
e of the mer
ury and the horizontal plane will be the same as the

angle ϕ between the resultant for
e and the verti
al dire
tion. On the basis of Figure 2 the tangent of the angle in

question is easily given by

tanϕ =
ma cosα

mg −ma sinα
=

cosα
g
a − sinα

.
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Figure 2

Let us examine the three spe
ial 
ases 
on
erning a

eleration.

a) When M ≪ m

tanϕ =
cosα

1
sinα − sinα

= tanα,

that is ϕ = α = 10◦.
b) When M = m

tanϕ =
cosα

3
2 sinα − sinα

=
2 sinα cosα

3− 2 sin2 α
,

from where ϕ = 6.636◦ ≈ 6.6◦.
c) In the 
ase of M ≫ m

tanϕ =
cosα

2
sinα − sinα

=
sinα cosα

2− sin2 α
,

from where ϕ = 4.962◦ ≈ 5.0◦.

Note. The dis
ussion of the M ≫ m 
ase was not in the original obje
tives of the problem. It is dis
ussed here simply for

the sake of symmetry and be
ause some of the 
ompetitors examined this instead of the M ≪ m 
ase.

2. In two in�nitely thin linear 
ondu
tors situated parallel at a distan
e d from ea
h other ele
tri
 
urrents of

the same magnitude �ow in opposite dire
tions. The lines of magneti
 indu
tion are in planes perpendi
ular to the


ondu
tors. Choose an arbitrary point P in one of the planes and examine whether the indu
tion line going through

that point is 
ir
ular.

(Gyula Radnai)

Solution. Figure 3 illustrates some of the magneti
 indu
tion lines of the magneti
 �eld generated by the 
urrents

in the two parallel 
ondu
tors equal in magnitude but of opposite dire
tions.

Figure 3

Due to the spe
ial 
urrent pattern the resulting magneti
 �eld shows 
onsiderable symmetry. The indu
tion lines

separating the two 
ondu
tors are not only mirror images of ea
h other but any 
losed line following the dire
tion

of magneti
 indu
tion is also symmetri
 to the plane laid a
ross the two 
ondu
tors. This does not mean that the

indu
tion lines 
annot be ellipses or higher order 
losed 
urves, but if there is a 
ir
le among them, its 
enter must be

situated in the plane laid a
ross the 
ondu
tors.

Let us de�ne an (x, y) 
oordinate system in the sele
ted plane in a way that one of the 
urrents 
rosses it in the

origin, and the other at point (d, 0). Only those 
ir
les 
ontaining point P (x, y) of the plane 
an be real indu
tion lines

that have their 
enter on axis �x�. The 
enter of the 
ir
le is (x0, 0). The equation of the 
ir
le is

(x− x0)
2 + y2 = R2,

where R is a fun
tion of d and x0.
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Figure 4

If this 
ir
le is an indu
tion line, then at any point of the 
ir
le the dire
tion of the indu
tion ve
tor is the same

as that of the tangent line at that point (Figure 4 ). The angular 
oe�
ient at point P (x, y) is

tanϕ = −
1

tanϕ0
= −

1
y

x−x0

= −
x− x0

y
.

This is to be 
ompared with the angular 
oe�
ient of the indu
tion ve
tor in point P . The angular 
oe�
ient of the

resultant B is (Figure 5 )

tanϕB =
By

Bx
=

B1y +B2y

B1x +B2x
.

Let us 
al
ulate this quantity. The magnitude of the indu
tion ve
tor generated by a single 
ondu
tor is

B =
µ0I

2π
·
1

r
.

With this and exploiting the geometri
al properties shown in Figure 5 the individual 
omponents are

B1y = B1 cosα =
µ0I

2π
·
cosα

r1
=

µ0I

2π
·
x

r21
,

B2y = −B2 cosβ = −
µ0I

2π
·
cosβ

r2
=

µ0I

2π
·
(d− x)

r22
,

B1x = −B1 sinα = −
µ0I

2π
·
sinα

r1
= −

µ0I

2π
·
y

r21
,

B2x = B2 sinβ =
µ0I

2π
·
sinβ

r2
=

µ0I

2π
·
y

r22
.

Let us substitute these expressions into the the equation set up for tanϕB . After redu
tion we get

tanϕB =

x
r2
1

+ d−x
r2
2

−
y
r2
1

+ y
r2
2

=
x
(

1
r2
1

−
1
r2
2

)

+ d
r2
2

−y
(

1
r2
1

−
1
r2
2

) = −

x−
d

1−(r2/r1)
2

y
.

This expression 
an be equivalent to the earlier expression

tanϕ = −
x− x0

y

if and only if

x0 =
d

1− (r2/r1)
2 .

Substituting also expressions r2 =

√

y2 + (x− d)
2
and r1 =

√

y2 + x2
after rearranging the sides we get (x− 0)

2
+y2 =

x0(x0 − d). And this is exa
tly the equation of the (x0, 0) 
entered 
ir
le 
ontaining the given point P , that is the
indu
tion line is 
ir
ular. We get the radius of the 
ir
le as well

R =
√

x0(x0 − d).
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Figure 5

Sin
e P 
an be any point in spa
e and a
ross one point there 
an go only one line, in this magneti
 �eld every

indu
tion line is 
ir
ular!

Note. The lo
i of the points of the plane with 
onstant ratio of distan
es from two given points is the so 
alled Apollonius'


ir
le. Our results 
an be interpreted in other words that the indu
tion lines of this magneti
 �eld are Apollonius' 
ir
les.

Introdu
ing the notation r2/r1 = λ, the equation of the 
ir
les be
omes

(

x−
d

1− λ2

)2

+ y2
=

(

λ
d

1− λ2

)2

,

from where the interesting relationship R = λx0 
an also be read. (Apollonius lived between 262 and 190 b.
., and he introdu
ed

the terms ellipse, parabola and hyperbola in his work on 
oni
 se
tions.)

3. Inside the 
apsule of a freely orbiting spa
eship a water ball 4 cm in diameter is �oating motionless. In its

vi
inity there is a 8 cm long thin glass sti
k of 
ir
ular 
ross-se
tion with rounded ends. We gently make the sti
k

tou
h the �water drop�. Outline what shape the water is going to take.

(Frigyes Károlyházy)

Solution. At the beginning (Figure 6 ) the glass sti
k �oats in the vi
inity of the water ball.

The pro
ess begins when we gently tou
h the water drop with one end of the sti
k (Figure 7 ). The water moistens

the sti
k, slightly �owing onto the rounded end of the sti
k (Figure 8 ). However, the pro
ess 
annot stop here sin
e

the resultant for
e a
ting on the sti
k is not zero. It is true that the pressure is somewhat higher inside the water drop

than the air pressure outside (∆p = 2α/R) and this 
ould result in pushing the sti
k of radius r outwards, but the

2rπα su
tion for
e of the water �lm 
overing the sti
k is mu
h larger. Therefore, the sti
k advan
es further into the

water drop. This intermediate situation is shown in Figure 9.

Figure 6

Figure 7

Figure 8
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Figure 9

Figure 10

Figure 11

But there is still no equilibrium of for
es, there is no reason why the sti
k should stop until the state shown in

Figure 10. Here the sti
k rea
hes the left side of the water drop and slightly overshoots so the water surfa
e is slightly

extruded. The equilibrium of for
es is rea
hed only when the left end of the sti
k emerges from the water drop and

the water surfa
e at both ends of the sti
k takes the same shape (Figure 11 ).

It is also to be 
onsidered whether the water drop spreads on the sti
k or not. The total energy of the system

equals the sum of the surfa
e energy of the water tou
hing the air and the surfa
e energy of the water tou
hing the

glass. This energy tries to be the smallest possible. Considering that the sti
k is thin, the amount of glass surfa
e

is negligible 
ompared to the overall surfa
e of the water ball. The equilibrium of the system is determined by the

minimum surfa
e requirement of the water, and this is met by the shape of a sphere (in the 
ase of 
onstant volume).

In the �nal state the water ball is almost exa
tly spheri
al, and the glass sti
k lies in the diameter of the sphere with

both of its ends sti
king out from the water.

∗

The 
eremonial de
laration of the results took pla
e on 21 November 2003.

First the president of the 
ompetition 
ommittee spoke in memory of the late Ede Teller and re
ited the problems

that Teller had to solve to win the 1925 Eötvös 
ompetition. The people present agreed that those problems were

easier than the 
urrent ones. It is to be admitted though that at that time not too mu
h literature, not as many good

exer
ise books and 
lubs were available for preparation.

After the introdu
tory �ashba
ks, the presentation of the 2003 Eötvös 
ompetition problems and their 
orre
t

solutions followed. To the solutions of the �rst two problems given by Gyula Radnai, Peter Gnädig added some

interesting supplementary notes and presented a solution based on a surprising analogy. Then the president of the


ompetition 
ommittee asked some of the best performing parti
ipants to present their solutions of the third problem

approa
hed from di�erent angles.

The prizes were handed to the winners by Judit Németh, 
orresponding member of the Hungarian A
ademy of

S
ien
es and president of the Loránd Eötvös Physi
al So
iety.

The �rst prize along with a 20000Ft book 
erti�
ate was awarded to Márton Horváth 12th grade student of

Fazekas Mihály Se
ondary S
hool, Budapest, pupil of Gábor Horváth. He 
orre
tly solved all the three problems.

The se
ond prize with a 15000Ft book 
erti�
ate was awarded ea
h to Endre Csóka, a mathemati
s student of

Eötvös Loránd University, who formerly passed his A levels at Fazekas Mihály Se
ondary S
hool, Debre
en as pupil

of Ervin Szegedi and to Péter Kómár 11th grade student of Fazekas Mihály Se
ondary S
hool, Budapest, pupil of

Ce
ília Dvorák.

The happiest 
ompetitor this year again was the �rst prize winner, be
ause besides the moral vi
tory he was also

awarded the So
iety's Eötvös Competition Medal. Thus there are already two people in the 
ountry who possess this

medal.
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