On 17 October 2003 E6tvos Lorand Physical Society held in Budapest and in 15 other towns the 55th Eotvos
Competition since the 1949 restart of the event.
In the following we present the problems and their solution.

1. A thin-walled cylinder rolls without slipping down a slope with incline angle of o« = 10°. The mass of the
cylinder wall is M and the mass of the closing disks is negligible. The cylinder contains mercury of mass m. (The
friction between the cylinder and the mercury is negligible.)

Figure 1

The sloping angle of the mercury surface settles at some angle ¢. Determine this angle ¢ if
a) M < m;
b) M =m.
(Péter Balogh)

Solution. The solution based on dynamics seems straightforward. Force is exerted on the mercury by the Earth
and by the cylinder. On the cylinder there is force exerted by the Earth, the mercury and the slope. Therefore force
is exerted on this system (mercury + cylinder) by the slope and the Earth. As a result the mass centre of the system
moves parallel with the slope with an acceleration of a. Denoting the friction force by S, by the law of dynamics
(second law of motion):

(m+ M)gsina— S = (m+ M)a.

The cylinder rotates around its mass centre, which is also moving, with an angular acceleration of § = a/R. The
accelerated rotation is driven by friction force S. (Note that the mercury does not rotate since the friction is negligible
between the mercury and the cylinder.) Therefore the dynamical equation is:

a
SR=MR?—
R’
from where
S =DMa

follows. Substituting this into the dynamical equation of the motion for the acceleration we get

_ m+ M .
a= m+2Mgsma.

In special cases
gsina, if M < m;
2
a={ z-gsina, if M =m;
39 sina, if M > m.

The simplest way we can determine the sloping angle of the mercury is if we consider that in a system co-accelerating
with the liquid, the surface of the liquid is still perpendicular to the resultant force of the gravitational and inertial
forces acting on it. The angle ¢ between the surface of the mercury and the horizontal plane will be the same as the
angle ¢ between the resultant force and the vertical direction. On the basis of Figure 2 the tangent of the angle in

question is easily given by
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Figure 2

Let us examine the three special cases concerning acceleration.
a) When M < m

Ccos &
tanp = —/——— =tang,
sina s o
that is ¢ = a = 10°.
b) When M =m
ta Ccos & 2sin a cos «
ney = 3 - = 2
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from where ¢ = 6.636° =~ 6.6°.
c) In the case of M > m
¢ COS (v sin «v cos &
any = = ,
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from where ¢ = 4.962° = 5.0°.

Note. The discussion of the M > m case was not in the original objectives of the problem. It is discussed here simply for
the sake of symmetry and because some of the competitors examined this instead of the M < m case.

2. In two infinitely thin linear conductors situated parallel at a distance d from each other electric currents of
the same magnitude flow in opposite directions. The lines of magnetic induction are in planes perpendicular to the
conductors. Choose an arbitrary point P in one of the planes and examine whether the induction line going through
that point is circular.

(Gyula Radnai)

Solution. Figure 3 illustrates some of the magnetic induction lines of the magnetic field generated by the currents
in the two parallel conductors equal in magnitude but of opposite directions.

Figure 3

Due to the special current pattern the resulting magnetic field shows considerable symmetry. The induction lines
separating the two conductors are not only mirror images of each other but any closed line following the direction
of magnetic induction is also symmetric to the plane laid across the two conductors. This does not mean that the
induction lines cannot be ellipses or higher order closed curves, but if there is a circle among them, its center must be
situated in the plane laid across the conductors.

Let us define an (z,y) coordinate system in the selected plane in a way that one of the currents crosses it in the
origin, and the other at point (d,0). Only those circles containing point P(x,y) of the plane can be real induction lines
that have their center on axis ,,«”. The center of the circle is (9, 0). The equation of the circle is

(x — ;vo)2 +y? = R?,

where R is a function of d and xg.



Figure 4

If this circle is an induction line, then at any point of the circle the direction of the induction vector is the same
as that of the tangent line at that point (Figure 4). The angular coefficient at point P(x,y) is

1 1 T — X0
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This is to be compared with the angular coefficient of the induction vector in point P. The angular coefficient of the

resultant B is (Figure 5)
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Let us calculate this quantity. The magnitude of the induction vector generated by a single conductor is
pol 1
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With this and exploiting the geometrical properties shown in Figure 5 the individual components are
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Let us substitute these expressions into the the equation set up for tan pp. After reduction we get
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This expression can be equivalent to the earlier expression

T — X0
tanp = —
Y
if and only if
d
Tg= ——.
1= (r2/r1)*

Substituting also expressions ro = /42 + (z — d)® and r; = /32 + #2 after rearranging the sides we get (z — 0)>+y° =
zo(xop — d). And this is exactly the equation of the (xg,0) centered circle containing the given point P, that is the
induction line is circular. We get the radius of the circle as well

R= \V JJQ(!EO — d)



Figure 5

Since P can be any point in space and across one point there can go only one line, in this magnetic field every
induction line is circular!

Note. The loci of the points of the plane with constant ratio of distances from two given points is the so called Apollonius’
circle. Our results can be interpreted in other words that the induction lines of this magnetic field are Apollonius’ circles.

Introducing the notation r2/r1 = A, the equation of the circles becomes

d \?> d \?
(x_l—)@) ty _<’\1—A2> :

from where the interesting relationship R = Azo can also be read. (Apollonius lived between 262 and 190 b.c., and he introduced

the terms ellipse, parabola and hyperbola in his work on conic sections.)

3. Inside the capsule of a freely orbiting spaceship a water ball 4 cm in diameter is floating motionless. In its
vicinity there is a 8 cm long thin glass stick of circular cross-section with rounded ends. We gently make the stick
touch the ,water drop”. Qutline what shape the water is going to take.

(Frigyes Kdrolyhdzy)

Solution. At the beginning (Figure 6) the glass stick floats in the vicinity of the water ball.

The process begins when we gently touch the water drop with one end of the stick (Figure 7). The water moistens
the stick, slightly flowing onto the rounded end of the stick (Figure 8). However, the process cannot stop here since
the resultant force acting on the stick is not zero. It is true that the pressure is somewhat higher inside the water drop
than the air pressure outside (Ap = 2«/R) and this could result in pushing the stick of radius r outwards, but the
2rma suction force of the water film covering the stick is much larger. Therefore, the stick advances further into the
water drop. This intermediate situation is shown in Figure 9.
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But there is still no equilibrium of forces, there is no reason why the stick should stop until the state shown in
Figure 10. Here the stick reaches the left side of the water drop and slightly overshoots so the water surface is slightly
extruded. The equilibrium of forces is reached only when the left end of the stick emerges from the water drop and
the water surface at both ends of the stick takes the same shape (Figure 11).

It is also to be considered whether the water drop spreads on the stick or not. The total energy of the system
equals the sum of the surface energy of the water touching the air and the surface energy of the water touching the
glass. This energy tries to be the smallest possible. Considering that the stick is thin, the amount of glass surface
is negligible compared to the overall surface of the water ball. The equilibrium of the system is determined by the
minimum surface requirement of the water, and this is met by the shape of a sphere (in the case of constant volume).
In the final state the water ball is almost exactly spherical, and the glass stick lies in the diameter of the sphere with
both of its ends sticking out from the water.

*

The ceremonial declaration of the results took place on 21 November 2003.

First the president of the competition committee spoke in memory of the late Ede Teller and recited the problems
that Teller had to solve to win the 1925 E6tvos competition. The people present agreed that those problems were
easier than the current ones. It is to be admitted though that at that time not too much literature, not as many good
exercise books and clubs were available for preparation.

After the introductory flashbacks, the presentation of the 2003 E&tvis competition problems and their correct
solutions followed. To the solutions of the first two problems given by Gyula Radnai, Peter Gnddig added some
interesting supplementary notes and presented a solution based on a surprising analogy. Then the president of the
competition committee asked some of the best performing participants to present their solutions of the third problem
approached from different angles.

The prizes were handed to the winners by Judit Németh, corresponding member of the Hungarian Academy of
Sciences and president of the Lorand E&6tvos Physical Society.

The first prize along with a 20000Ft book certificate was awarded to Marton Horvath 12th grade student of
Fazekas Mihély Secondary School, Budapest, pupil of Gdbor Horvdth. He correctly solved all the three problems.

The second prize with a 15000Ft book certificate was awarded each to Endre Cséka, a mathematics student of
Eo6tvos Lorand University, who formerly passed his A levels at Fazekas Mihaly Secondary School, Debrecen as pupil
of Ervin Szegedi and to Péter Komar 11th grade student of Fazekas Mihaly Secondary School, Budapest, pupil of
Cecilia Dvordk.

The happiest competitor this year again was the first prize winner, because besides the moral victory he was also
awarded the Society’s E6tvos Competition Medal. Thus there are already two people in the country who possess this
medal.



