
On 17 Otober 2003 Eötvös Loránd Physial Soiety held in Budapest and in 15 other towns the 55th Eötvös

Competition sine the 1949 restart of the event.

In the following we present the problems and their solution.

1. A thin-walled ylinder rolls without slipping down a slope with inline angle of α = 10◦. The mass of the

ylinder wall is M and the mass of the losing disks is negligible. The ylinder ontains merury of mass m. (The

frition between the ylinder and the merury is negligible.)

Figure 1

The sloping angle of the merury surfae settles at some angle ϕ. Determine this angle ϕ if

a) M ≪ m;
b) M = m.

(Péter Balogh)

Solution. The solution based on dynamis seems straightforward. Fore is exerted on the merury by the Earth

and by the ylinder. On the ylinder there is fore exerted by the Earth, the merury and the slope. Therefore fore

is exerted on this system (merury + ylinder) by the slope and the Earth. As a result the mass entre of the system

moves parallel with the slope with an aeleration of a. Denoting the frition fore by S, by the law of dynamis

(seond law of motion):

(m+M)g sinα− S = (m+M)a.

The ylinder rotates around its mass entre, whih is also moving, with an angular aeleration of β = a/R. The
aelerated rotation is driven by frition fore S. (Note that the merury does not rotate sine the frition is negligible

between the merury and the ylinder.) Therefore the dynamial equation is:

SR = MR2 a

R
,

from where

S = Ma

follows. Substituting this into the dynamial equation of the motion for the aeleration we get

a =
m+M

m+ 2M
g sinα.

In speial ases

a =



















g sinα, if M ≪ m;
2

3
g sinα, if M = m;

1

2
g sinα, if M ≫ m.

The simplest way we an determine the sloping angle of the merury is if we onsider that in a system o-aelerating

with the liquid, the surfae of the liquid is still perpendiular to the resultant fore of the gravitational and inertial

fores ating on it. The angle ϕ between the surfae of the merury and the horizontal plane will be the same as the

angle ϕ between the resultant fore and the vertial diretion. On the basis of Figure 2 the tangent of the angle in

question is easily given by

tanϕ =
ma cosα

mg −ma sinα
=

cosα
g
a − sinα

.
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Figure 2

Let us examine the three speial ases onerning aeleration.

a) When M ≪ m

tanϕ =
cosα

1
sinα − sinα

= tanα,

that is ϕ = α = 10◦.
b) When M = m

tanϕ =
cosα

3
2 sinα − sinα

=
2 sinα cosα

3− 2 sin2 α
,

from where ϕ = 6.636◦ ≈ 6.6◦.
c) In the ase of M ≫ m

tanϕ =
cosα

2
sinα − sinα

=
sinα cosα

2− sin2 α
,

from where ϕ = 4.962◦ ≈ 5.0◦.

Note. The disussion of the M ≫ m ase was not in the original objetives of the problem. It is disussed here simply for

the sake of symmetry and beause some of the ompetitors examined this instead of the M ≪ m ase.

2. In two in�nitely thin linear ondutors situated parallel at a distane d from eah other eletri urrents of

the same magnitude �ow in opposite diretions. The lines of magneti indution are in planes perpendiular to the

ondutors. Choose an arbitrary point P in one of the planes and examine whether the indution line going through

that point is irular.

(Gyula Radnai)

Solution. Figure 3 illustrates some of the magneti indution lines of the magneti �eld generated by the urrents

in the two parallel ondutors equal in magnitude but of opposite diretions.

Figure 3

Due to the speial urrent pattern the resulting magneti �eld shows onsiderable symmetry. The indution lines

separating the two ondutors are not only mirror images of eah other but any losed line following the diretion

of magneti indution is also symmetri to the plane laid aross the two ondutors. This does not mean that the

indution lines annot be ellipses or higher order losed urves, but if there is a irle among them, its enter must be

situated in the plane laid aross the ondutors.

Let us de�ne an (x, y) oordinate system in the seleted plane in a way that one of the urrents rosses it in the

origin, and the other at point (d, 0). Only those irles ontaining point P (x, y) of the plane an be real indution lines

that have their enter on axis �x�. The enter of the irle is (x0, 0). The equation of the irle is

(x− x0)
2 + y2 = R2,

where R is a funtion of d and x0.
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Figure 4

If this irle is an indution line, then at any point of the irle the diretion of the indution vetor is the same

as that of the tangent line at that point (Figure 4 ). The angular oe�ient at point P (x, y) is

tanϕ = −
1

tanϕ0
= −

1
y

x−x0

= −
x− x0

y
.

This is to be ompared with the angular oe�ient of the indution vetor in point P . The angular oe�ient of the

resultant B is (Figure 5 )

tanϕB =
By

Bx
=

B1y +B2y

B1x +B2x
.

Let us alulate this quantity. The magnitude of the indution vetor generated by a single ondutor is

B =
µ0I

2π
·
1

r
.

With this and exploiting the geometrial properties shown in Figure 5 the individual omponents are

B1y = B1 cosα =
µ0I

2π
·
cosα

r1
=

µ0I

2π
·
x

r21
,

B2y = −B2 cosβ = −
µ0I

2π
·
cosβ

r2
=

µ0I

2π
·
(d− x)

r22
,

B1x = −B1 sinα = −
µ0I

2π
·
sinα

r1
= −

µ0I

2π
·
y

r21
,

B2x = B2 sinβ =
µ0I

2π
·
sinβ

r2
=

µ0I

2π
·
y

r22
.

Let us substitute these expressions into the the equation set up for tanϕB . After redution we get

tanϕB =

x
r2
1

+ d−x
r2
2

−
y
r2
1

+ y
r2
2

=
x
(

1
r2
1

−
1
r2
2

)

+ d
r2
2

−y
(

1
r2
1

−
1
r2
2

) = −

x−
d

1−(r2/r1)
2

y
.

This expression an be equivalent to the earlier expression

tanϕ = −
x− x0

y

if and only if

x0 =
d

1− (r2/r1)
2 .

Substituting also expressions r2 =

√

y2 + (x− d)
2
and r1 =

√

y2 + x2
after rearranging the sides we get (x− 0)

2
+y2 =

x0(x0 − d). And this is exatly the equation of the (x0, 0) entered irle ontaining the given point P , that is the
indution line is irular. We get the radius of the irle as well

R =
√

x0(x0 − d).
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Figure 5

Sine P an be any point in spae and aross one point there an go only one line, in this magneti �eld every

indution line is irular!

Note. The loi of the points of the plane with onstant ratio of distanes from two given points is the so alled Apollonius'

irle. Our results an be interpreted in other words that the indution lines of this magneti �eld are Apollonius' irles.

Introduing the notation r2/r1 = λ, the equation of the irles beomes

(

x−
d

1− λ2

)2

+ y2
=

(

λ
d

1− λ2

)2

,

from where the interesting relationship R = λx0 an also be read. (Apollonius lived between 262 and 190 b.., and he introdued

the terms ellipse, parabola and hyperbola in his work on oni setions.)

3. Inside the apsule of a freely orbiting spaeship a water ball 4 cm in diameter is �oating motionless. In its

viinity there is a 8 cm long thin glass stik of irular ross-setion with rounded ends. We gently make the stik

touh the �water drop�. Outline what shape the water is going to take.

(Frigyes Károlyházy)

Solution. At the beginning (Figure 6 ) the glass stik �oats in the viinity of the water ball.

The proess begins when we gently touh the water drop with one end of the stik (Figure 7 ). The water moistens

the stik, slightly �owing onto the rounded end of the stik (Figure 8 ). However, the proess annot stop here sine

the resultant fore ating on the stik is not zero. It is true that the pressure is somewhat higher inside the water drop

than the air pressure outside (∆p = 2α/R) and this ould result in pushing the stik of radius r outwards, but the

2rπα sution fore of the water �lm overing the stik is muh larger. Therefore, the stik advanes further into the

water drop. This intermediate situation is shown in Figure 9.

Figure 6

Figure 7

Figure 8
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Figure 9

Figure 10

Figure 11

But there is still no equilibrium of fores, there is no reason why the stik should stop until the state shown in

Figure 10. Here the stik reahes the left side of the water drop and slightly overshoots so the water surfae is slightly

extruded. The equilibrium of fores is reahed only when the left end of the stik emerges from the water drop and

the water surfae at both ends of the stik takes the same shape (Figure 11 ).

It is also to be onsidered whether the water drop spreads on the stik or not. The total energy of the system

equals the sum of the surfae energy of the water touhing the air and the surfae energy of the water touhing the

glass. This energy tries to be the smallest possible. Considering that the stik is thin, the amount of glass surfae

is negligible ompared to the overall surfae of the water ball. The equilibrium of the system is determined by the

minimum surfae requirement of the water, and this is met by the shape of a sphere (in the ase of onstant volume).

In the �nal state the water ball is almost exatly spherial, and the glass stik lies in the diameter of the sphere with

both of its ends stiking out from the water.

∗

The eremonial delaration of the results took plae on 21 November 2003.

First the president of the ompetition ommittee spoke in memory of the late Ede Teller and reited the problems

that Teller had to solve to win the 1925 Eötvös ompetition. The people present agreed that those problems were

easier than the urrent ones. It is to be admitted though that at that time not too muh literature, not as many good

exerise books and lubs were available for preparation.

After the introdutory �ashbaks, the presentation of the 2003 Eötvös ompetition problems and their orret

solutions followed. To the solutions of the �rst two problems given by Gyula Radnai, Peter Gnädig added some

interesting supplementary notes and presented a solution based on a surprising analogy. Then the president of the

ompetition ommittee asked some of the best performing partiipants to present their solutions of the third problem

approahed from di�erent angles.

The prizes were handed to the winners by Judit Németh, orresponding member of the Hungarian Aademy of

Sienes and president of the Loránd Eötvös Physial Soiety.

The �rst prize along with a 20000Ft book erti�ate was awarded to Márton Horváth 12th grade student of

Fazekas Mihály Seondary Shool, Budapest, pupil of Gábor Horváth. He orretly solved all the three problems.

The seond prize with a 15000Ft book erti�ate was awarded eah to Endre Csóka, a mathematis student of

Eötvös Loránd University, who formerly passed his A levels at Fazekas Mihály Seondary Shool, Debreen as pupil

of Ervin Szegedi and to Péter Kómár 11th grade student of Fazekas Mihály Seondary Shool, Budapest, pupil of

Ceília Dvorák.

The happiest ompetitor this year again was the �rst prize winner, beause besides the moral vitory he was also

awarded the Soiety's Eötvös Competition Medal. Thus there are already two people in the ountry who possess this

medal.
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