
Problem 1. The line e touhes the irle k of diameter EF at the point E. Consider all point pairs A, B of the

line e, suh that the line segment AB ontains the point E and AE · EB equals a given onstant. For suh a pair of

points, let A′
and B′

denote the intersetions of the irle k with the line segments AF and BF , respetively. Prove

that the lines A′B′
are all onurrent.

Solution 1. Let G denote the seond intersetion of the irle k1 irumsribed about the triangle ABF and the

line EF . The power of the point E with respet to k1 is a onstant (AE · EB = FE · EG) therefore, the position of

G is independent of the hoie of the pair A, B.

Consider now the inversion with respet to the irle of radius EF entred at F . The inverse of the line e is the

irle k and the inverses of the points A and B are the points A′
and B′

. The inverse of the irle k1 is the line A′B′
,

and within that, the ar ontaining G is mapped onto the line segment A′B′
. Thus the line segment A′B′

is passing

through the inverse G′
of the point G, whih was shown to be independent of the hoie of A and B. �

Remarks. 1. The above solution is based on the properties of inversion, whih is not overed by the high shool urriulum.

The solutions by L. Balogh and P. Maga also use inversion.

2. From the solution above, it is easy to see that if EF = 1 then

FG
′ =

1

FG
=

1

1 + EG
=

1

1 +AE ·EB
.

The following two solutions are more down to earth.

Solution 2. Let M denote the intersetion of EF and A′B′
. We will show that M is the same point for all pairs

A, B, that is, the length of FM is onstant. The length of FM an be expressed in terms of the ratio of the areas of

the triangle FA′B′
and the quadrilateral FA′EB′

:

FM

EF
=

AFA′B′

AFA′EB′

.

Let the length of the line segment EF be hosen as unity, and let ∠AFE = α and ∠BFE = β. Tangeny and Thales'

theorem imply that the triangles FEA, FEB, FA′E and FB′E are right-angled, and thus AE = tanα, BE = tanβ,
FA′ = cosα, FB′ = cosβ, A′E = sinα and B′E = sinβ. Hene the areas in question are

AFA′B′ =
1

2
FA′ · FB′ sin (α+ β) =

cosα · cosβ · sin (α+ β)

2
,

AFA′EB′ = AFA′E +AFEB′ =
sinα cosα+ sinβ cosβ

2
=

sin 2α+ sin 2β

4
=

=
sin (α+ β) cos (α− β)

2
,

and �nally,

FM =
FM

EF
=

AFA′B′

AFA′EB′

=
cosα cosβ

cos (α − β)
=

cosα cosβ

cosα cosβ − sinα sinβ
=

=
1

1 + tanα tanβ
=

1

1 + EA · EB
.

Therefore, the length of the line segment FM is onstant. �
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Solution 3. (Outlines of the solution by G. Kis). Let the entre of k be the origin of the artesian plane and let

its radius be equal to unity. Set the oordinates of A and B to (1, a) and (1, b), respetively. Then the equations of

the lines AF and BF and the irle k are

ax

2
+

a

2
= y

bx

2
+

b

2
= y

x2 + y2 = 1.

The intersetions are obtained by solving the orresponding pairs of simultaneous equations:

A′ =

(

8

a2 + 4
− 1,

4a

a2 + 4

)

and B′ =

(

8

b2 + 4
− 1,

4b

b2 + 4

)

.

Hene the equation of the line A′B′
is

4 + ab

2(a+ b)

(

x+ 1−
8

a2 + 4

)

+
4a

a2 + 4
= y.

Substituting y = 0, the x-oordinate of the intersetion of the line A′B′
with the x-axis is

x0 =
4 + ab

4− ab
.

This quantity is onstant sine ab is onstant. Therefore, the lines A′B′
all pass through the point (x0, 0). �

Problem 2. A k-olouring of a graph G is a olouring of the points of G with k available olours, suh that the

two endpoints of every edge of G are oloured di�erently. A graph G is said to have the unique k-olouring property if

there exists one and only one k-olouring of G suh that there are no points u and v of G that have the same olour

in some k-olouring and di�erent olours in another k-olouring of G.

Prove that if a graph on n points has the unique 3-olouring property and n ≥ 3 then G has at least 2n− 3 edges.

Solution. Consider a �xed 3-olouring of G in whih there are n1, n2, n3 verties, respetively, oloured in the

given olours. Then learly n1 + n2 + n3 = n.

Assume that two olour lasses (say the red and the green) do not span a onneted graph in G, that is the subgraph

formed by the edges onneting red and green points has at least two omponents. If the olours are interhanged in

one of these omponents (that is the olour of the green points is hanged to red and vie versa), then the edges of the

resulting graph still onnet points of di�erent olours. Thus we obtain a 3-olouring in whih the olour lasses form

a di�erent partition of the points of G. In the new 3-olouring there are either two di�erently oloured points that

previously had the same olour or two similarly oloured points that previously had di�erent olours. This ontradits

the unique 3-olouring property of G. Therefore, every two olour lasses of G span a onneted graph.

It is known that the number of edges in a onneted graph is at most 1 less than the number of its verties. Hene

the number of verties in the �rst two olour lasses is at least n1 + n2 − 1, the number of verties in the �rst and

third olour lasses is at least n1 + n3 − 1 and, �nally, the number of verties in the seond and third olour lasses is

at least n2 + n3 − 1. The edges ounted above are learly di�erent from eah other, hene

(n1 + n2 − 1) + (n2 + n3 − 1) + (n3 + n1 − 1) = 2n− 3

is indeed a lower bound for the number of edges in G. �

Remarks. 1. There were several attempts to solve the problem by indution: The statement is learly true for graphs on 3

points. Assume that the estimation is proved to be orret for graphs on at most n− 1 points. If the degree of eah vertex of a

graph on n points with a unique 3-olouring is at least 4 then the number of its edges is at least 2n and the statement is true. If
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G has a vertex of degree 2 then anelling that vertex yields a graph with a unique 3-olouring. (This is straightforward.) The

resulting graph has at least 2(n− 1)− 3 = 2n− 5 edges by assumption, and thus G itself has at least 2n− 5+ 2 = 2n− 3 edges.

We are left to the ase when the minimum degree in G is 3. Unfortunately, if a vertex of degree 3 happens to be anelled, then

the remaining graph G− v will not neessarily have a proper 3-olouring: it may happen that in some 3-olouring of G− v the

points onneted to v have di�erent olours. Now if two points of the same olour onneted to v are glued together, then the

resulting graph will have a unique 3-olouring but the number of its edges is only 3 less than the number of edges in G. A proof

by indution would require a graph that has fewer edges by at least 4.

The Competition Committee does not know of any argument that would improve the above idea to a omplete proof by

indution.

2. Some ompetitors showed that the lower bound given in the problem an be attained. It is lear that the omplete graph

on 3 points has a unique 3-olouring and it has 2 · 3− 3 = 3 edges. It is also easy to see that adding another vertex to a graph

G of a unique 3-olouring, onneting it to two di�erently oloured verties of G yields a new graph with a unique 3-olouring

for whih the estimation will be sharp if it was sharp for the original graph.

3. With reasonable modi�ations, the solution an be extended to estimate the number of edges in graphs that have a unique

k-olouring. It an be shown that a graph with a unique k-olouring has at least

(k − 1)(n− k) +

(

k

2

)

edges. Remark 2 an also be generalized: The omplete graph on k verties has a unique k-olouring, and a vertex added to

a graph with a unique k-olouring and onneted to k − 1 verties of di�erent olours will also result a graph with a unique

k-olouring.

4. Our method also works if instead of the k-olouring being unique, we have only an upper bound for the number of

k-olourings in a graph. The solution provides an upper bound for the omponent graphs spanned by two olour lasses and

hene the number of edges spanning two omponents an be estimated from below.

Problem 3. Let (a, b) denote the greatest ommon fator of the integers a and b. Prove that apart from a �nite

number of exeptions,

n
∑

i=1

n
∑

j=1

(i, j) > 4n2

for every positive integer n.

Solution 1. Denote the sum on the left-hand side of the above inequality by f(n). Examine how many times a

given number d ours as (i, j) in the sum. It is lear that if (i, j) = d then

i

d
and

j

d
are relative primes and they both

lie in the interval

[

1,
⌊n

d

⌋]

where ⌊n⌋ denotes the greatest integer not exeeding n.

On the other hand, if i′, j′ ∈
[

1,
⌊n

d

⌋]

are relative prime then with i = i′ · d and j = j′ · d we have (i, j) = d and

i, j ∈ [1, n]. This orrespondene yields the following rearrangement:

(1) f(n) =

n
∑

i=1

n
∑

j=1

(i, j) =

n
∑

d=1

∑

(i, j) = d,

1 ≤ i ≤ n,

1 ≤ j ≤ n

d =

n
∑

d=1

∑

(i, j) = 1,

1 ≤ i ≤
n

d
,

1 ≤ j ≤
n

d

d =

n
∑

d=1

d · g
(n

d

)

,

where g(x) is the number of oprime pairs formed by the numbers between 1 and x. Estimating the value of g(x) we
will show that

(2) g(x) ≥
x2

100
.

Sine the pair (1, 1) is always present (2) is obvious for x ≤ 10. We shall proeed by subtrating, for eah d, the number

of pairs ontaining d as a ommon fator from the total number of pairs:

g(x) ≥ ⌊x⌋
2
−
⌊x

2

⌋2

−
⌊x

3

⌋2

−
⌊x

4

⌋2

− · · · >

(

9x

10

)2

−
x2

22
−

x2

32
−

x2

42
− · · · >

> x2

(

81

100
−

1

4
−

(

1

2 · 3
+

1

3 · 4
+

1

4 · 5
· · ·

))

=

= x2

(

81

100
−

1

4
−

(

1

2
−

1

3
+

1

3
−

1

4
+

1

4
−

1

5
· · ·

))

≥ x2

(

81

100
−

1

4
−

1

2

)

>
x2

100
.

Substituting the estimation into (1), we get

(3) f(n) =
n
∑

d=1

d · g
(n

d

)

≥
n
∑

d=1

d ·
n2

100 · d2
=

n2

100

n
∑

d=1

1

d
.
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Sine the harmoni series diverges,

N
∑

d=1

1

d
> 400 for some N . (For example, N = 2800 will do.) Applying (3) to n ≥ N

yields

n
∑

i=1

n
∑

j=1

(i, j) = f(n) ≥
n2

100
· 400 = 4n2.

The laim is hene proved. �

Remarks. 1. It turns out from the proof that the fator 4 on the right-hand side an be replaed by any positive onstant.

The prie for this is that the largest integer for whih the inequality of the problem is not true will be greater.

2. Using more sophistiated number-theoretial mahinery, it an be shown that the funtion g(x) in the solution approahes

6

π2
x
2
asymptotially. Hene the sum f(n) is equal to

6

π2
x
2 log x asymptotially.

3. Most solvers found less elementary solutions based on the divergene of the sum of reiproals of primes. A typial

reasoning is outlined below:

Solution 2. The greatest ommon fator (i, j) an be estimated with the sum of the ommon prime fators of the

numbers i and j. Let p1 < p2 < · · · < pk be the primes dividing both i and j. Sine every prime is at least 2,

(i, j) ≥ p1 · p2 · . . . · pk ≥ p1 + p2 · p3 · . . . · pk ≥(4)

≥ p1 + p2 + p3 · . . . · pk ≥ · · · ≥ p1 + p2 + · · ·+ pk.

It is well known that the sum of the reiproals of primes tends to in�nity. Therefore, there is a number N for whih

the sum of the reiproals of the primes between 1 and N is greater than say 6. Then (4) an be applied to estimate

f(n) for n ≥ N as follows:

f(n) ≥
∑

p is prime

∑

p|(i,j)

p =
∑

p is prime

p ·

⌊

n

p

⌋2

≥
∑

p is prime

p ≤ n

p

(

n

p
− 1

)2

=

=
∑

p is prime

p ≤ n

(

n2

p
− 2n+ p

)

> −2n2 + n2 ·
∑

p is prime

p ≤ n

1

p
≥ −2n2 + n2 ·

∑

p is prime

p ≤ N

1

p
≥

≥ −2n2 + 6n2 = 4n2. �

4


