
Problem 1. The line e tou
hes the 
ir
le k of diameter EF at the point E. Consider all point pairs A, B of the

line e, su
h that the line segment AB 
ontains the point E and AE · EB equals a given 
onstant. For su
h a pair of

points, let A′
and B′

denote the interse
tions of the 
ir
le k with the line segments AF and BF , respe
tively. Prove

that the lines A′B′
are all 
on
urrent.

Solution 1. Let G denote the se
ond interse
tion of the 
ir
le k1 
ir
ums
ribed about the triangle ABF and the

line EF . The power of the point E with respe
t to k1 is a 
onstant (AE · EB = FE · EG) therefore, the position of

G is independent of the 
hoi
e of the pair A, B.

Consider now the inversion with respe
t to the 
ir
le of radius EF 
entred at F . The inverse of the line e is the


ir
le k and the inverses of the points A and B are the points A′
and B′

. The inverse of the 
ir
le k1 is the line A′B′
,

and within that, the ar
 
ontaining G is mapped onto the line segment A′B′
. Thus the line segment A′B′

is passing

through the inverse G′
of the point G, whi
h was shown to be independent of the 
hoi
e of A and B. �

Remarks. 1. The above solution is based on the properties of inversion, whi
h is not 
overed by the high s
hool 
urri
ulum.

The solutions by L. Balogh and P. Maga also use inversion.

2. From the solution above, it is easy to see that if EF = 1 then

FG
′ =

1

FG
=

1

1 + EG
=

1

1 +AE ·EB
.

The following two solutions are more down to earth.

Solution 2. Let M denote the interse
tion of EF and A′B′
. We will show that M is the same point for all pairs

A, B, that is, the length of FM is 
onstant. The length of FM 
an be expressed in terms of the ratio of the areas of

the triangle FA′B′
and the quadrilateral FA′EB′

:

FM

EF
=

AFA′B′

AFA′EB′

.

Let the length of the line segment EF be 
hosen as unity, and let ∠AFE = α and ∠BFE = β. Tangen
y and Thales'

theorem imply that the triangles FEA, FEB, FA′E and FB′E are right-angled, and thus AE = tanα, BE = tanβ,
FA′ = cosα, FB′ = cosβ, A′E = sinα and B′E = sinβ. Hen
e the areas in question are

AFA′B′ =
1

2
FA′ · FB′ sin (α+ β) =

cosα · cosβ · sin (α+ β)

2
,

AFA′EB′ = AFA′E +AFEB′ =
sinα cosα+ sinβ cosβ

2
=

sin 2α+ sin 2β

4
=

=
sin (α+ β) cos (α− β)

2
,

and �nally,

FM =
FM

EF
=

AFA′B′

AFA′EB′

=
cosα cosβ

cos (α − β)
=

cosα cosβ

cosα cosβ − sinα sinβ
=

=
1

1 + tanα tanβ
=

1

1 + EA · EB
.

Therefore, the length of the line segment FM is 
onstant. �
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Solution 3. (Outlines of the solution by G. Kis). Let the 
entre of k be the origin of the 
artesian plane and let

its radius be equal to unity. Set the 
oordinates of A and B to (1, a) and (1, b), respe
tively. Then the equations of

the lines AF and BF and the 
ir
le k are

ax

2
+

a

2
= y

bx

2
+

b

2
= y

x2 + y2 = 1.

The interse
tions are obtained by solving the 
orresponding pairs of simultaneous equations:

A′ =

(

8

a2 + 4
− 1,

4a

a2 + 4

)

and B′ =

(

8

b2 + 4
− 1,

4b

b2 + 4

)

.

Hen
e the equation of the line A′B′
is

4 + ab

2(a+ b)

(

x+ 1−
8

a2 + 4

)

+
4a

a2 + 4
= y.

Substituting y = 0, the x-
oordinate of the interse
tion of the line A′B′
with the x-axis is

x0 =
4 + ab

4− ab
.

This quantity is 
onstant sin
e ab is 
onstant. Therefore, the lines A′B′
all pass through the point (x0, 0). �

Problem 2. A k-
olouring of a graph G is a 
olouring of the points of G with k available 
olours, su
h that the

two endpoints of every edge of G are 
oloured di�erently. A graph G is said to have the unique k-
olouring property if

there exists one and only one k-
olouring of G su
h that there are no points u and v of G that have the same 
olour

in some k-
olouring and di�erent 
olours in another k-
olouring of G.

Prove that if a graph on n points has the unique 3-
olouring property and n ≥ 3 then G has at least 2n− 3 edges.

Solution. Consider a �xed 3-
olouring of G in whi
h there are n1, n2, n3 verti
es, respe
tively, 
oloured in the

given 
olours. Then 
learly n1 + n2 + n3 = n.

Assume that two 
olour 
lasses (say the red and the green) do not span a 
onne
ted graph in G, that is the subgraph

formed by the edges 
onne
ting red and green points has at least two 
omponents. If the 
olours are inter
hanged in

one of these 
omponents (that is the 
olour of the green points is 
hanged to red and vi
e versa), then the edges of the

resulting graph still 
onne
t points of di�erent 
olours. Thus we obtain a 3-
olouring in whi
h the 
olour 
lasses form

a di�erent partition of the points of G. In the new 3-
olouring there are either two di�erently 
oloured points that

previously had the same 
olour or two similarly 
oloured points that previously had di�erent 
olours. This 
ontradi
ts

the unique 3-
olouring property of G. Therefore, every two 
olour 
lasses of G span a 
onne
ted graph.

It is known that the number of edges in a 
onne
ted graph is at most 1 less than the number of its verti
es. Hen
e

the number of verti
es in the �rst two 
olour 
lasses is at least n1 + n2 − 1, the number of verti
es in the �rst and

third 
olour 
lasses is at least n1 + n3 − 1 and, �nally, the number of verti
es in the se
ond and third 
olour 
lasses is

at least n2 + n3 − 1. The edges 
ounted above are 
learly di�erent from ea
h other, hen
e

(n1 + n2 − 1) + (n2 + n3 − 1) + (n3 + n1 − 1) = 2n− 3

is indeed a lower bound for the number of edges in G. �

Remarks. 1. There were several attempts to solve the problem by indu
tion: The statement is 
learly true for graphs on 3

points. Assume that the estimation is proved to be 
orre
t for graphs on at most n− 1 points. If the degree of ea
h vertex of a

graph on n points with a unique 3-
olouring is at least 4 then the number of its edges is at least 2n and the statement is true. If
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G has a vertex of degree 2 then 
an
elling that vertex yields a graph with a unique 3-
olouring. (This is straightforward.) The

resulting graph has at least 2(n− 1)− 3 = 2n− 5 edges by assumption, and thus G itself has at least 2n− 5+ 2 = 2n− 3 edges.

We are left to the 
ase when the minimum degree in G is 3. Unfortunately, if a vertex of degree 3 happens to be 
an
elled, then

the remaining graph G− v will not ne
essarily have a proper 3-
olouring: it may happen that in some 3-
olouring of G− v the

points 
onne
ted to v have di�erent 
olours. Now if two points of the same 
olour 
onne
ted to v are glued together, then the

resulting graph will have a unique 3-
olouring but the number of its edges is only 3 less than the number of edges in G. A proof

by indu
tion would require a graph that has fewer edges by at least 4.

The Competition Committee does not know of any argument that would improve the above idea to a 
omplete proof by

indu
tion.

2. Some 
ompetitors showed that the lower bound given in the problem 
an be attained. It is 
lear that the 
omplete graph

on 3 points has a unique 3-
olouring and it has 2 · 3− 3 = 3 edges. It is also easy to see that adding another vertex to a graph

G of a unique 3-
olouring, 
onne
ting it to two di�erently 
oloured verti
es of G yields a new graph with a unique 3-
olouring

for whi
h the estimation will be sharp if it was sharp for the original graph.

3. With reasonable modi�
ations, the solution 
an be extended to estimate the number of edges in graphs that have a unique

k-
olouring. It 
an be shown that a graph with a unique k-
olouring has at least

(k − 1)(n− k) +

(

k

2

)

edges. Remark 2 
an also be generalized: The 
omplete graph on k verti
es has a unique k-
olouring, and a vertex added to

a graph with a unique k-
olouring and 
onne
ted to k − 1 verti
es of di�erent 
olours will also result a graph with a unique

k-
olouring.

4. Our method also works if instead of the k-
olouring being unique, we have only an upper bound for the number of

k-
olourings in a graph. The solution provides an upper bound for the 
omponent graphs spanned by two 
olour 
lasses and

hen
e the number of edges spanning two 
omponents 
an be estimated from below.

Problem 3. Let (a, b) denote the greatest 
ommon fa
tor of the integers a and b. Prove that apart from a �nite

number of ex
eptions,

n
∑

i=1

n
∑

j=1

(i, j) > 4n2

for every positive integer n.

Solution 1. Denote the sum on the left-hand side of the above inequality by f(n). Examine how many times a

given number d o

urs as (i, j) in the sum. It is 
lear that if (i, j) = d then

i

d
and

j

d
are relative primes and they both

lie in the interval

[

1,
⌊n

d

⌋]

where ⌊n⌋ denotes the greatest integer not ex
eeding n.

On the other hand, if i′, j′ ∈
[

1,
⌊n

d

⌋]

are relative prime then with i = i′ · d and j = j′ · d we have (i, j) = d and

i, j ∈ [1, n]. This 
orresponden
e yields the following rearrangement:

(1) f(n) =

n
∑

i=1

n
∑

j=1

(i, j) =

n
∑

d=1

∑

(i, j) = d,

1 ≤ i ≤ n,

1 ≤ j ≤ n

d =

n
∑

d=1

∑

(i, j) = 1,

1 ≤ i ≤
n

d
,

1 ≤ j ≤
n

d

d =

n
∑

d=1

d · g
(n

d

)

,

where g(x) is the number of 
oprime pairs formed by the numbers between 1 and x. Estimating the value of g(x) we
will show that

(2) g(x) ≥
x2

100
.

Sin
e the pair (1, 1) is always present (2) is obvious for x ≤ 10. We shall pro
eed by subtra
ting, for ea
h d, the number

of pairs 
ontaining d as a 
ommon fa
tor from the total number of pairs:

g(x) ≥ ⌊x⌋
2
−
⌊x

2

⌋2

−
⌊x

3

⌋2

−
⌊x

4

⌋2

− · · · >

(

9x

10

)2

−
x2

22
−

x2

32
−

x2

42
− · · · >

> x2

(

81

100
−

1

4
−

(

1

2 · 3
+

1

3 · 4
+

1

4 · 5
· · ·

))

=

= x2

(

81

100
−

1

4
−

(

1

2
−

1

3
+

1

3
−

1

4
+

1

4
−

1

5
· · ·

))

≥ x2

(

81

100
−

1

4
−

1

2

)

>
x2

100
.

Substituting the estimation into (1), we get

(3) f(n) =
n
∑

d=1

d · g
(n

d

)

≥
n
∑

d=1

d ·
n2

100 · d2
=

n2

100

n
∑

d=1

1

d
.
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Sin
e the harmoni
 series diverges,

N
∑

d=1

1

d
> 400 for some N . (For example, N = 2800 will do.) Applying (3) to n ≥ N

yields

n
∑

i=1

n
∑

j=1

(i, j) = f(n) ≥
n2

100
· 400 = 4n2.

The 
laim is hen
e proved. �

Remarks. 1. It turns out from the proof that the fa
tor 4 on the right-hand side 
an be repla
ed by any positive 
onstant.

The pri
e for this is that the largest integer for whi
h the inequality of the problem is not true will be greater.

2. Using more sophisti
ated number-theoreti
al ma
hinery, it 
an be shown that the fun
tion g(x) in the solution approa
hes

6

π2
x
2
asymptoti
ally. Hen
e the sum f(n) is equal to

6

π2
x
2 log x asymptoti
ally.

3. Most solvers found less elementary solutions based on the divergen
e of the sum of re
ipro
als of primes. A typi
al

reasoning is outlined below:

Solution 2. The greatest 
ommon fa
tor (i, j) 
an be estimated with the sum of the 
ommon prime fa
tors of the

numbers i and j. Let p1 < p2 < · · · < pk be the primes dividing both i and j. Sin
e every prime is at least 2,

(i, j) ≥ p1 · p2 · . . . · pk ≥ p1 + p2 · p3 · . . . · pk ≥(4)

≥ p1 + p2 + p3 · . . . · pk ≥ · · · ≥ p1 + p2 + · · ·+ pk.

It is well known that the sum of the re
ipro
als of primes tends to in�nity. Therefore, there is a number N for whi
h

the sum of the re
ipro
als of the primes between 1 and N is greater than say 6. Then (4) 
an be applied to estimate

f(n) for n ≥ N as follows:

f(n) ≥
∑

p is prime

∑

p|(i,j)

p =
∑

p is prime

p ·

⌊

n

p

⌋2

≥
∑

p is prime

p ≤ n

p

(

n

p
− 1

)2

=

=
∑

p is prime

p ≤ n

(

n2

p
− 2n+ p

)

> −2n2 + n2 ·
∑

p is prime

p ≤ n

1

p
≥ −2n2 + n2 ·

∑

p is prime

p ≤ N

1

p
≥

≥ −2n2 + 6n2 = 4n2. �
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