Problem 1. The line e touches the circle k of diameter EF at the point E. Consider all point pairs A, B of the
line e, such that the line segment AB contains the point E and AE - EB equals a given constant. For such a pair of
points, let A" and B’ denote the intersections of the circle k with the line segments AF and BF, respectively. Prove
that the lines A'B’ are all concurrent.

Solution 1. Let G denote the second intersection of the circle kq circumscribed about the triangle ABF and the
line EF. The power of the point E with respect to k1 is a constant (AE - EB = FE - EG) therefore, the position of
G is independent of the choice of the pair A, B.

Consider now the inversion with respect to the circle of radius FF centred at F'. The inverse of the line e is the
circle k and the inverses of the points A and B are the points A’ and B’. The inverse of the circle k; is the line A'B’,
and within that, the arc containing G is mapped onto the line segment A’B’. Thus the line segment A’B’ is passing
through the inverse G’ of the point GG, which was shown to be independent of the choice of A and B. O

Remarks. 1. The above solution is based on the properties of inversion, which is not covered by the high school curriculum.
The solutions by L. Balogh and P. Maga also use inversion.
2. From the solution above, it is easy to see that if £F = 1 then
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The following two solutions are more down to earth.

Solution 2. Let M denote the intersection of EF and A’B’. We will show that M is the same point for all pairs
A, B, that is, the length of F'M is constant. The length of F'M can be expressed in terms of the ratio of the areas of
the triangle FA’B’ and the quadrilateral FA’EB’:
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Let the length of the line segment E'F' be chosen as unity, and let ZAFFE = o and ZBFE = . Tangency and Thales’
theorem imply that the triangles FEA, FEB, FA'E and FB'E are right-angled, and thus AE = tana, BE = tan 3,
FA" =cosa, FB' = cos 3, A’E = sina and B'E = sin 3. Hence the areas in question are
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Therefore, the length of the line segment F'M is constant. [



B’ ™B

Solution 3. (Outlines of the solution by G. Kis). Let the centre of k be the origin of the cartesian plane and let
its radius be equal to unity. Set the coordinates of A and B to (1,a) and (1,b), respectively. Then the equations of
the lines AF and BF and the circle k are

ar ~a
PR
br b
PR
z? +y? = 1.

The intersections are obtained by solving the corresponding pairs of simultaneous equations:
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Hence the equation of the line A'B’ is

4+ ab 1 n da
2a+b) \" a2+4) a2ta ¥

Substituting y = 0, the z-coordinate of the intersection of the line A’B’ with the z-axis is
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This quantity is constant since ab is constant. Therefore, the lines A’ B’ all pass through the point (z9,0). O

Problem 2. A k-colouring of a graph G is a colouring of the points of G with k available colours, such that the
two endpoints of every edge of G are coloured differently. A graph G is said to have the unique k-colouring property if
there exists one and only one k-colouring of G such that there are no points u and v of G that have the same colour
in some k-colouring and different colours in another k-colouring of G.

Prove that if a graph on n points has the unique 3-colouring property and n > 3 then G has at least 2n — 3 edges.

Solution. Consider a fixed 3-colouring of G in which there are ny, ns, ng vertices, respectively, coloured in the
given colours. Then clearly n; + ngo + n3 = n.

Assume that two colour classes (say the red and the green) do not span a connected graph in G, that is the subgraph
formed by the edges connecting red and green points has at least two components. If the colours are interchanged in
one of these components (that is the colour of the green points is changed to red and vice versa), then the edges of the
resulting graph still connect points of different colours. Thus we obtain a 3-colouring in which the colour classes form
a different partition of the points of G. In the new 3-colouring there are either two differently coloured points that
previously had the same colour or two similarly coloured points that previously had different colours. This contradicts
the unique 3-colouring property of G. Therefore, every two colour classes of G span a connected graph.

It is known that the number of edges in a connected graph is at most 1 less than the number of its vertices. Hence
the number of vertices in the first two colour classes is at least n; + ny — 1, the number of vertices in the first and
third colour classes is at least n1 + ng — 1 and, finally, the number of vertices in the second and third colour classes is
at least ny + ng — 1. The edges counted above are clearly different from each other, hence

(nm+n2—1)+Mne+n3—1)+(nzg+n1—1)=2n-3

is indeed a lower bound for the number of edges in G. [

Remarks. 1. There were several attempts to solve the problem by induction: The statement is clearly true for graphs on 3
points. Assume that the estimation is proved to be correct for graphs on at most n — 1 points. If the degree of each vertex of a
graph on n points with a unique 3-colouring is at least 4 then the number of its edges is at least 2n and the statement is true. If



G has a vertex of degree 2 then cancelling that vertex yields a graph with a unique 3-colouring. (This is straightforward.) The
resulting graph has at least 2(n — 1) — 3 = 2n — 5 edges by assumption, and thus G itself has at least 2n — 5+ 2 = 2n — 3 edges.
We are left to the case when the minimum degree in G is 3. Unfortunately, if a vertex of degree 3 happens to be cancelled, then
the remaining graph G — v will not necessarily have a proper 3-colouring: it may happen that in some 3-colouring of G — v the
points connected to v have different colours. Now if two points of the same colour connected to v are glued together, then the
resulting graph will have a unique 3-colouring but the number of its edges is only 3 less than the number of edges in G. A proof
by induction would require a graph that has fewer edges by at least 4.

The Competition Committee does not know of any argument that would improve the above idea to a complete proof by
induction.

2. Some competitors showed that the lower bound given in the problem can be attained. It is clear that the complete graph
on 3 points has a unique 3-colouring and it has 2 -3 — 3 = 3 edges. It is also easy to see that adding another vertex to a graph
G of a unique 3-colouring, connecting it to two differently coloured vertices of G yields a new graph with a unique 3-colouring
for which the estimation will be sharp if it was sharp for the original graph.

3. With reasonable modifications, the solution can be extended to estimate the number of edges in graphs that have a unique
k-colouring. It can be shown that a graph with a unique k-colouring has at least

(k—1)(n— k) + (’;)

edges. Remark 2 can also be generalized: The complete graph on k vertices has a unique k-colouring, and a vertex added to
a graph with a unique k-colouring and connected to k — 1 vertices of different colours will also result a graph with a unique
k-colouring.

4. Our method also works if instead of the k-colouring being unique, we have only an upper bound for the number of
k-colourings in a graph. The solution provides an upper bound for the component graphs spanned by two colour classes and
hence the number of edges spanning two components can be estimated from below.

Problem 3. Let (a,b) denote the greatest common factor of the integers a and b. Prove that apart from a finite

number of exceptions,
n n
> 30>
i=1 j=1
for every positive integer n.

Solution 1. Denote the sum on the left-hand side of the above inequality by f(n). Examine how many times a

given number d occurs as (4, ) in the sum. It is clear that if (i, j) = d then :—1 and % are relative primes and they both
lie in the interval [1, {g” where |n] denotes the greatest integer not exceeding n.

On the other hand, if i’, 5’ € [1, {g” are relative prime then with ¢ = 7' - d and j = j' - d we have (i,7) = d and

i,7 € [1,n]. This correspondence yields the following rearrangement:
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where g(z) is the number of coprime pairs formed by the numbers between 1 and x. Estimating the value of g(x) we
will show that
X

(2) g(x) > 100"

Since the pair (1, 1) is always present (2) is obvious for z < 10. We shall proceed by subtracting, for each d, the number
of pairs containing d as a common factor from the total number of pairs:
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Substituting the estimation into (1), we get
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Since the harmonic series diverges, Z p > 400 for some N. (For example, N = 25°° will do.) Applying (3) to n > N
d=1
yields
i:ié()4¢()>’ﬂ 400 = 4n?
i,4) = f(n) 2 155 =4n°.

i=1 j=1
The claim is hence proved. [
Remarks. 1. It turns out from the proof that the factor 4 on the right-hand side can be replaced by any positive constant.

The price for this is that the largest integer for which the inequality of the problem is not true will be greater.

2. Using more sophisticated number-theoretical machinery, it can be shown that the function g(x) in the solution approaches
. . 6 .
—2x2 asymptotically. Hence the sum f(n) is equal to —2x2 log z asymptotically.
T
3. Most solvers found less elementary solutions based on the divergence of the sum of reciprocals of primes. A typical

reasoning is outlined below:

Solution 2. The greatest common factor (¢, j) can be estimated with the sum of the common prime factors of the
numbers ¢ and j. Let p; < ps < --- < pg be the primes dividing both ¢ and j. Since every prime is at least 2,
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It is well known that the sum of the reciprocals of primes tends to infinity. Therefore, there is a number N for which

the sum of the reciprocals of the primes between 1 and N is greater than say 6. Then (4) can be applied to estimate
f(n) for n > N as follows:
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> 202 +6n%=4n%. O



