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Two proofs are presented on Feuerba
h's theorem seen above.

Notations

The three sides of triangle ABC are denoted by a, b and c the usual way. Let K denote the 
ir
ums
ribed 
ir
le

with 
entre O, and radius r; B denotes the ins
ribed 
ir
le, its 
entre is Q, its radius is ̺, and the area of the triangle

is t, its semiperimeter is s, its 
entroid is S, its ortho
entre is M , and the midpoints of the sides are Ha, Hb and Hc.

Heron's formula expresses the area of the triangle in terms of the sides,

t =
√

s(s− a)(s− b)(s− c).

Further known formulae of area:

t = ̺s =
1

2
ab sin γ =

abc

4r
.

From these and the expansion of Heron's formula we get that

2r̺ =
abc

a+ b+ c
,(1)

̺2 =
(s− a)(s− b)(s− c)

s
(2)

=
−a3 − b3 − c3 − 2abc+ ab2 + ac2 + ba2 + bc2 + ca2 + cb2

4(a+ b+ c)
.

Figure 1

Feuerba
h's 
ir
le

Let F denote the 
ir
le passing through the midpoints of the sides. Sin
e triangle HaHbHc is obtained from triangle

ABC by a s
aling down of 
entre S and fa
tor −
1

2
, the radius of F is

r

2
and its 
entre is F , and it is adja
ent to

Euler's line of the triangle: F is the midpoint of the segment OM , S trise
ts OM and OF . Euler (1707�1783) already
knew that F passes through the feet of the altitudes and the midpoints of segments joining M and the verti
es. The

reason why F is still 
alled Feuerba
h's 
ir
le is the following ni
e theorem:

Theorem. F tou
hes the ins
ribed and the es
ribed 
ir
les.

In 1822, in his do
toral dissertation Karl Wilhelm Feuerba
h (1800�1834) 
al
ulated the distan
e of the 
entres of

the 
ir
les in question. He showed that |FQ| =

∣

∣

∣

∣

1

2
r − ̺

∣

∣

∣

∣

. As all data of the triangle 
an be expressed with a, b and c,

if not in other way, but impli
itly, as a root of (simultaneous) equation(s), this 
al
ulation 
an be 
arried out, at least

in prin
iple. If points A, B and C are pla
ed in a 
oordinate system as points (0; 0), (1; 0) and (x; y), then only two

parameters are needed for the 
al
ulations. The 
al
ulation may result in higher and higher degree equations, whi
h
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are more and more di�
ult to handle. Therefore, the majority of the proofs of the theorem use ve
tors. The 
al
ulation

below stands out with its relative shortness. I learnt the most signi�
ant elements of the argument (Lemma 1) more

than 30 years ago at István Reiman's extra
urri
ular problem-solving 
ourse, and it 
an be found in István Reiman's

book titled Geometry and its Frontiers (Gondolat Kiadó, Budapest, 1986).

It is more 
onvenient to determine the square of the distan
es: avoiding square roots, only rational fra
tions 
ome

in sight. From (1) and (2) it is immediately known how to express the last two terms of

(

1

2
r − ̺

)2

=
1

4
r2 − r̺+ ̺2

with a, b and c. For the 
al
ulation of |FQ|
2
below only a, b, c and r are used.

Ve
tors

The task be
omes mu
h simpler with the right 
hoi
e of the origin. In our 
ase let the ve
tor pointing from point

O to X be denoted by X. Then |A| = |B| = |C| = r. For any origin S =
1

3
(A+B+C). As the starting point of the

position ve
tors is O and points O, S, M and F are all adja
ent to Euler's line, it follows that M = 3S = A+B+C

and

(3) F =
1

2
(A+B+C).

Lemma 1.

(4) Q =
aA+ bB+ cC

a+ b+ c
.

Proof. Let P denote the fra
tion on the right-hand side of (4). We show that its end-point is lying on the bise
tors

of the angles, respe
tively. The length of ve
tor C − A is b, thus
1

b
(C − A) is the unit ve
tor from A towards C.

Similarly,

1

c
(B−A) is the unit ve
tor towards B. Hen
e the end-point of the sum of these two, i.e.

bB+ cC− (b + c)A

bc
lies on the angle bise
tor at A. Any point of the bise
tor line 
an be obtained if the sum is multiplied by a s
alar and

added to A. Removing fra
tions yields the parametri
 ve
tor-equation of the angle bise
tor of A:

fA(x) = A+ x
(

bB+ cC− (b+ c)A
)

.

If x runs through real numbers, ve
tors fA(x) yield the points of the angle bise
tor. On
e you know the result, 
he
king

is easy: the line de�ned by fA(x) is determined by two of its points: x = 0 gives vertex A, x =
1

b+ c
gives the point

of the segment BC dividing it in the ratio c : b, i.e. the foot of the angle bise
tor. Choosing x =
1

a+ b+ c
shows that

P lies on the bise
tor indeed. By symmetry, P also lies on the other two bise
tors, so P = Q. �

Besides basi
 properties of ve
tors (
ommutativity of addition, linear 
ombination) the notion of s
alar produ
t

is also needed. As the produ
t of a ve
tor with itself is the square of its length, an arbitrary distan
e |XY | or its

square 
an be 
al
ulated: |XY |
2
= |X−Y|

2
= X2 + Y2 − 2XY. Besides the 
ommutativity and a 
ertain kind of

asso
iativity of the dot produ
t, only the values of the produ
ts AB, AC and BC are needed. As c2 = |B−A|
2
=

|B|
2
+ |A2| − 2AB = 2r2 − 2AB, we get that

(5) AB = r2 −
1

2
c2, AC = r2 −

1

2
b2, BC = r2 −

1

2
a2.

Proof of the theorem. Cal
ulate the distan
e of two 
entres, F and Q.

Q2 = |Q|
2
=

(

aA+ bB+ cC

a+ b+ c

)2

(6)

=
a2A2 + b2B2 + c2C2 + 2abAB+ 2acAC+ 2bcBC

(a+ b+ c)
2

=
a2r2 + b2r2 + c2r2 + 2abr2 − abc2 + 2acr2 − acb2 + 2bcr2 − bca2

(a+ b+ c)
2

= r2 −
abc

a+ b+ c
.
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From this, (1) yields Euler's theorem:

(7) |Q|
2
= r2 − 2r̺

and hen
e

1

2
r ≥ ̺.

F2 = |F|
2
=

1

4
(A+B+C)

2
=

1

4
(3r2 + 2AB+ 2AC+ 2BC)(8)

=
1

4
(9r2 − a2 − b2 − c2),

2FQ = (A+B+C)
aA+ bB+ cC

a+ b+ c
(9)

=
1

a+ b + c

(

aA2 + bB2 + cC2 + (a+ b)AB+ (a+ c)AC+ (b+ c)BC
)

= r2 +
1

a+ b+ c

(

(a+ b)

(

r2 −
1

2
c2
)

+ (a+ c)

(

r2 −
1

2
b2
)

+ (b+ c)

(

r2 −
1

2
a2
))

= 3r2 −
1

2(a+ b+ c)
(ac2 + bc2 + ab2 + cb2 + ba2 + ca2).

Subtra
t (9) from the sum of equations (6) and (8):

|F−Q|
2
= F2 +Q2 − 2FQ =

1

4
r2

+
−4abc− (a+ b+ c)(a2 + b2 + c2) + 2(ac2 + bc2 + ab2 + cb2 + ba2 + ca2)

4(a+ b + c)

=
1

4
r2 −

2abc

4(a+ b + c)
+

−a3 − b3 − c3 − 2abc+ ab2 + ac2 + ba2 + bc2 + ca2 + cb2

4(a+ b+ c)
.

From this, with (1) and (2)

|F−Q|
2
=

1

4
r2 − r̺+ ̺2 =

(

1

2
r − ̺

)2

.

The length of segment FQ is

1

2
r− ̺, and hen
e the 
ir
le of 
entre Q and radius ̺ tou
hes the 
ir
le of 
entre F and

radius

1

2
r (Feuerba
h's 
ir
le) from inside. �

Remarks

1. Prove that the ve
tor pointing to the 
entre of the 
ir
le es
ribed to side a is

Qa =
−aA+ bB+ cC

−a+ b+ c
.

2. Find similar proofs that the ins
ribed 
ir
le tou
hes the es
ribed ones from outside.

3. A

ording to the theorem of Jean-Vi
tor Pon
elet (1788�1867) if the verti
es of k-sided polygon A1, . . . , Ak lie

on the 
ir
le K and, at the same time, the sides tou
h a 
ir
le B, then starting from an arbitrary point X = X1 of


ir
le K, drawing a tangent line to 
ir
le B and thus re
eiving next point X2 on 
ir
le K, then 
arrying on with the

pro
edure, the broken line re
eived after the kth step 
loses, i.e. Xk+1 = X1.
2

Based on Euler's formula (7), prove Pon
elet's theorem for k = 3.

4. A theorem similar to Lemma 1 (with an equally simple proof) holds in all dimensions; e.g. if A1, A2, A3 and

A4 are the verti
es of a tetrahedron, A1, A2, A3 and A4 are ve
tors pointing from the 
entre of the 
ir
ums
ribed

sphere to the verti
es, and Q is the ve
tor pointing to the 
entre of the ins
ribed sphere, Q, then

Q =
∑

1≤i≤4

ti
t1 + · · ·+ t4

Ai,

where ti is the area of the fa
e opposite to Ai.

2

More information on Pon
elet's theorem 
an be found in András Hraskó's arti
le in KöMaL 2002/1, pp. 21�31. (in English).
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5. Using equation (8) prove that sin2 α+ sin2 β + sin2 γ = 2 if and only if the triangle is right-angled.

6. Prove that Feuerba
h's 
ir
le F tou
hes the ins
ribed and es
ribed 
ir
les of triangles ABM , ACM and BCM .

(This means 12 further 
ir
les!)

Proof by inversion

The simplest proof of Feuerba
h's theorem is presented, whi
h has been found by M'Clelland (1891) and La
hlan

(1893) independently, and has been adopted by most textbooks (e.g. D. Pedoe: Cir
les, MAA publi
ation, 1957, 1979,

1995). The proof of the main idea (Lemma 2) below is new and slightly simpler than usual.

Let A0 denote the point of tangen
y of the ins
ribed 
ir
le B on the side a, and A1 the point of tangen
y of 
ir
le

H es
ribed to side a, and, �nally let f be the 
ommon axis of symmetry of these two 
ir
les, the interior angle bise
tor

at A. These two 
ir
les have 4 
ommon tangent lines, the sides ℓa, ℓb, ℓc, and a fourth line ℓ′a, the re�e
tion of ℓa about
f . Let B′

and C′
be the re�e
tions of verti
es B and C about f , in this 
ase B′

, C′ ∈ ℓ′a.
As |CA0| = s− c and |BA1| = s− c, the midpoint of segment A0A1 is Ha and its length is

∣

∣a− 2(s− c)
∣

∣ = |c− b|.
Suppose that b 6= c and let i denote the inversion with respe
t to 
ir
le of diameter A0A1. In this 
ase i(A0) = A0,

i(A1) = A1, i(ℓa) = ℓa.

Figure 2

Figure 3

Lemma 2. i(B) = B, i(H) = H and i(ℓ′a) = F .

Proof. Inversion preserves tangen
y, thus i(B) tou
hes i(ℓa) at point i(A0). Hen
e the image of B is itself. We get

similarly that i(H) = H.

It still has to be proved that i(F) = ℓ′a. As F 
ontains the 
entre of the inversion, Ha, its image is a line. We

prove that the images of Hb and Hc are adja
ent to the line ℓ′a. Consider Hb, the 
ase of Hc is similar. Let X be the

interse
tion of lines HaHb and ℓ′a. The similarity of triangles B′AC′
and B′HbX implies that

|HbX | = |AC′| ·
|HbB

′|

|AB′|
= |AC′| ·

|AB′| − |AHb|

|AB′|
= b

c− b

2

c
.

If c−
b

2
is negative, then X is outside the segment [HbHa]. We get that |HbX | <

c

2
and hen
e, X is on the ray [HaHb).

Moreover,

|HbHa| · |XHa| = |HbHa|
(

|HbHa| − |HbX |
)

=
c

2

(

c

2
− b

c− b

2

c

)

=
1

4
(c− b)2.

Hen
e, i(Hb) = X , so i(Hb) ∈ ℓ′a. �
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Finally, sin
e ℓ′a is the 
ommon tangent line of B and H, so F is a 
ommon tangent (
ir
le) of the images of these

two 
ir
les. Finally, the same holds for any other es
ribed 
ir
le instead of H, the 
ir
le F tou
hes all four tangent


ir
les, indeed.

Appendix, some properties of inversion

Inversion i with respe
t to a 
ir
le of 
entre O and radius r is a bije
tion of the points apart form O of the plane

so that the image i(P ) of point P is on the ray starting from O and passing through P su
h that |OP | ·
∣

∣O i(P )
∣

∣ = r2.

This is an involution, i.e. i
(

i(P )
)

= P .

� The image of a straight line ℓ through O is itself (more pre
isely, i
(

ℓ \ {O}
)

= ℓ \ {O}.)
� If O /∈ ℓ, then its image is a 
ir
le passing through O.
� The image of a 
ir
le 
ontaining O is a straight line not 
ontaining O.
� The image of a 
ir
le not 
ontaining O is another 
ir
le. Their exterior point of similarity is O.
� Inversion preserves tangen
y, and the images of tangent 
ir
les and lines also tou
h ea
h other. Moreover, inversion

also preserves angles.
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