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Two proofs are presented on Feuerbah's theorem seen above.

Notations

The three sides of triangle ABC are denoted by a, b and c the usual way. Let K denote the irumsribed irle

with entre O, and radius r; B denotes the insribed irle, its entre is Q, its radius is ̺, and the area of the triangle

is t, its semiperimeter is s, its entroid is S, its orthoentre is M , and the midpoints of the sides are Ha, Hb and Hc.

Heron's formula expresses the area of the triangle in terms of the sides,

t =
√

s(s− a)(s− b)(s− c).

Further known formulae of area:

t = ̺s =
1

2
ab sin γ =

abc

4r
.

From these and the expansion of Heron's formula we get that

2r̺ =
abc

a+ b+ c
,(1)

̺2 =
(s− a)(s− b)(s− c)

s
(2)

=
−a3 − b3 − c3 − 2abc+ ab2 + ac2 + ba2 + bc2 + ca2 + cb2

4(a+ b+ c)
.

Figure 1

Feuerbah's irle

Let F denote the irle passing through the midpoints of the sides. Sine triangle HaHbHc is obtained from triangle

ABC by a saling down of entre S and fator −
1

2
, the radius of F is

r

2
and its entre is F , and it is adjaent to

Euler's line of the triangle: F is the midpoint of the segment OM , S trisets OM and OF . Euler (1707�1783) already
knew that F passes through the feet of the altitudes and the midpoints of segments joining M and the verties. The

reason why F is still alled Feuerbah's irle is the following nie theorem:

Theorem. F touhes the insribed and the esribed irles.

In 1822, in his dotoral dissertation Karl Wilhelm Feuerbah (1800�1834) alulated the distane of the entres of

the irles in question. He showed that |FQ| =

∣

∣

∣

∣

1

2
r − ̺

∣

∣

∣

∣

. As all data of the triangle an be expressed with a, b and c,

if not in other way, but impliitly, as a root of (simultaneous) equation(s), this alulation an be arried out, at least

in priniple. If points A, B and C are plaed in a oordinate system as points (0; 0), (1; 0) and (x; y), then only two

parameters are needed for the alulations. The alulation may result in higher and higher degree equations, whih
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are more and more di�ult to handle. Therefore, the majority of the proofs of the theorem use vetors. The alulation

below stands out with its relative shortness. I learnt the most signi�ant elements of the argument (Lemma 1) more

than 30 years ago at István Reiman's extraurriular problem-solving ourse, and it an be found in István Reiman's

book titled Geometry and its Frontiers (Gondolat Kiadó, Budapest, 1986).

It is more onvenient to determine the square of the distanes: avoiding square roots, only rational frations ome

in sight. From (1) and (2) it is immediately known how to express the last two terms of

(

1

2
r − ̺

)2

=
1

4
r2 − r̺+ ̺2

with a, b and c. For the alulation of |FQ|
2
below only a, b, c and r are used.

Vetors

The task beomes muh simpler with the right hoie of the origin. In our ase let the vetor pointing from point

O to X be denoted by X. Then |A| = |B| = |C| = r. For any origin S =
1

3
(A+B+C). As the starting point of the

position vetors is O and points O, S, M and F are all adjaent to Euler's line, it follows that M = 3S = A+B+C

and

(3) F =
1

2
(A+B+C).

Lemma 1.

(4) Q =
aA+ bB+ cC

a+ b+ c
.

Proof. Let P denote the fration on the right-hand side of (4). We show that its end-point is lying on the bisetors

of the angles, respetively. The length of vetor C − A is b, thus
1

b
(C − A) is the unit vetor from A towards C.

Similarly,

1

c
(B−A) is the unit vetor towards B. Hene the end-point of the sum of these two, i.e.

bB+ cC− (b + c)A

bc
lies on the angle bisetor at A. Any point of the bisetor line an be obtained if the sum is multiplied by a salar and

added to A. Removing frations yields the parametri vetor-equation of the angle bisetor of A:

fA(x) = A+ x
(

bB+ cC− (b+ c)A
)

.

If x runs through real numbers, vetors fA(x) yield the points of the angle bisetor. One you know the result, heking

is easy: the line de�ned by fA(x) is determined by two of its points: x = 0 gives vertex A, x =
1

b+ c
gives the point

of the segment BC dividing it in the ratio c : b, i.e. the foot of the angle bisetor. Choosing x =
1

a+ b+ c
shows that

P lies on the bisetor indeed. By symmetry, P also lies on the other two bisetors, so P = Q. �

Besides basi properties of vetors (ommutativity of addition, linear ombination) the notion of salar produt

is also needed. As the produt of a vetor with itself is the square of its length, an arbitrary distane |XY | or its

square an be alulated: |XY |
2
= |X−Y|

2
= X2 + Y2 − 2XY. Besides the ommutativity and a ertain kind of

assoiativity of the dot produt, only the values of the produts AB, AC and BC are needed. As c2 = |B−A|
2
=

|B|
2
+ |A2| − 2AB = 2r2 − 2AB, we get that

(5) AB = r2 −
1

2
c2, AC = r2 −

1

2
b2, BC = r2 −

1

2
a2.

Proof of the theorem. Calulate the distane of two entres, F and Q.

Q2 = |Q|
2
=

(

aA+ bB+ cC

a+ b+ c

)2

(6)

=
a2A2 + b2B2 + c2C2 + 2abAB+ 2acAC+ 2bcBC

(a+ b+ c)
2

=
a2r2 + b2r2 + c2r2 + 2abr2 − abc2 + 2acr2 − acb2 + 2bcr2 − bca2

(a+ b+ c)
2

= r2 −
abc

a+ b+ c
.
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From this, (1) yields Euler's theorem:

(7) |Q|
2
= r2 − 2r̺

and hene

1

2
r ≥ ̺.

F2 = |F|
2
=

1

4
(A+B+C)

2
=

1

4
(3r2 + 2AB+ 2AC+ 2BC)(8)

=
1

4
(9r2 − a2 − b2 − c2),

2FQ = (A+B+C)
aA+ bB+ cC

a+ b+ c
(9)

=
1

a+ b + c

(

aA2 + bB2 + cC2 + (a+ b)AB+ (a+ c)AC+ (b+ c)BC
)

= r2 +
1

a+ b+ c

(

(a+ b)

(

r2 −
1

2
c2
)

+ (a+ c)

(

r2 −
1

2
b2
)

+ (b+ c)

(

r2 −
1

2
a2
))

= 3r2 −
1

2(a+ b+ c)
(ac2 + bc2 + ab2 + cb2 + ba2 + ca2).

Subtrat (9) from the sum of equations (6) and (8):

|F−Q|
2
= F2 +Q2 − 2FQ =

1

4
r2

+
−4abc− (a+ b+ c)(a2 + b2 + c2) + 2(ac2 + bc2 + ab2 + cb2 + ba2 + ca2)

4(a+ b + c)

=
1

4
r2 −

2abc

4(a+ b + c)
+

−a3 − b3 − c3 − 2abc+ ab2 + ac2 + ba2 + bc2 + ca2 + cb2

4(a+ b+ c)
.

From this, with (1) and (2)

|F−Q|
2
=

1

4
r2 − r̺+ ̺2 =

(

1

2
r − ̺

)2

.

The length of segment FQ is

1

2
r− ̺, and hene the irle of entre Q and radius ̺ touhes the irle of entre F and

radius

1

2
r (Feuerbah's irle) from inside. �

Remarks

1. Prove that the vetor pointing to the entre of the irle esribed to side a is

Qa =
−aA+ bB+ cC

−a+ b+ c
.

2. Find similar proofs that the insribed irle touhes the esribed ones from outside.

3. Aording to the theorem of Jean-Vitor Ponelet (1788�1867) if the verties of k-sided polygon A1, . . . , Ak lie

on the irle K and, at the same time, the sides touh a irle B, then starting from an arbitrary point X = X1 of

irle K, drawing a tangent line to irle B and thus reeiving next point X2 on irle K, then arrying on with the

proedure, the broken line reeived after the kth step loses, i.e. Xk+1 = X1.
2

Based on Euler's formula (7), prove Ponelet's theorem for k = 3.

4. A theorem similar to Lemma 1 (with an equally simple proof) holds in all dimensions; e.g. if A1, A2, A3 and

A4 are the verties of a tetrahedron, A1, A2, A3 and A4 are vetors pointing from the entre of the irumsribed

sphere to the verties, and Q is the vetor pointing to the entre of the insribed sphere, Q, then

Q =
∑

1≤i≤4

ti
t1 + · · ·+ t4

Ai,

where ti is the area of the fae opposite to Ai.

2

More information on Ponelet's theorem an be found in András Hraskó's artile in KöMaL 2002/1, pp. 21�31. (in English).
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5. Using equation (8) prove that sin2 α+ sin2 β + sin2 γ = 2 if and only if the triangle is right-angled.

6. Prove that Feuerbah's irle F touhes the insribed and esribed irles of triangles ABM , ACM and BCM .

(This means 12 further irles!)

Proof by inversion

The simplest proof of Feuerbah's theorem is presented, whih has been found by M'Clelland (1891) and Lahlan

(1893) independently, and has been adopted by most textbooks (e.g. D. Pedoe: Cirles, MAA publiation, 1957, 1979,

1995). The proof of the main idea (Lemma 2) below is new and slightly simpler than usual.

Let A0 denote the point of tangeny of the insribed irle B on the side a, and A1 the point of tangeny of irle

H esribed to side a, and, �nally let f be the ommon axis of symmetry of these two irles, the interior angle bisetor

at A. These two irles have 4 ommon tangent lines, the sides ℓa, ℓb, ℓc, and a fourth line ℓ′a, the re�etion of ℓa about
f . Let B′

and C′
be the re�etions of verties B and C about f , in this ase B′

, C′ ∈ ℓ′a.
As |CA0| = s− c and |BA1| = s− c, the midpoint of segment A0A1 is Ha and its length is

∣

∣a− 2(s− c)
∣

∣ = |c− b|.
Suppose that b 6= c and let i denote the inversion with respet to irle of diameter A0A1. In this ase i(A0) = A0,

i(A1) = A1, i(ℓa) = ℓa.

Figure 2

Figure 3

Lemma 2. i(B) = B, i(H) = H and i(ℓ′a) = F .

Proof. Inversion preserves tangeny, thus i(B) touhes i(ℓa) at point i(A0). Hene the image of B is itself. We get

similarly that i(H) = H.

It still has to be proved that i(F) = ℓ′a. As F ontains the entre of the inversion, Ha, its image is a line. We

prove that the images of Hb and Hc are adjaent to the line ℓ′a. Consider Hb, the ase of Hc is similar. Let X be the

intersetion of lines HaHb and ℓ′a. The similarity of triangles B′AC′
and B′HbX implies that

|HbX | = |AC′| ·
|HbB

′|

|AB′|
= |AC′| ·

|AB′| − |AHb|

|AB′|
= b

c− b

2

c
.

If c−
b

2
is negative, then X is outside the segment [HbHa]. We get that |HbX | <

c

2
and hene, X is on the ray [HaHb).

Moreover,

|HbHa| · |XHa| = |HbHa|
(

|HbHa| − |HbX |
)

=
c

2

(

c

2
− b

c− b

2

c

)

=
1

4
(c− b)2.

Hene, i(Hb) = X , so i(Hb) ∈ ℓ′a. �
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Finally, sine ℓ′a is the ommon tangent line of B and H, so F is a ommon tangent (irle) of the images of these

two irles. Finally, the same holds for any other esribed irle instead of H, the irle F touhes all four tangent

irles, indeed.

Appendix, some properties of inversion

Inversion i with respet to a irle of entre O and radius r is a bijetion of the points apart form O of the plane

so that the image i(P ) of point P is on the ray starting from O and passing through P suh that |OP | ·
∣

∣O i(P )
∣

∣ = r2.

This is an involution, i.e. i
(

i(P )
)

= P .

� The image of a straight line ℓ through O is itself (more preisely, i
(

ℓ \ {O}
)

= ℓ \ {O}.)
� If O /∈ ℓ, then its image is a irle passing through O.
� The image of a irle ontaining O is a straight line not ontaining O.
� The image of a irle not ontaining O is another irle. Their exterior point of similarity is O.
� Inversion preserves tangeny, and the images of tangent irles and lines also touh eah other. Moreover, inversion

also preserves angles.
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