
As it was reported in the 2004/1 issue of KöMaL, the above sum will be paid as a prize by the Ele
troni
 Frontier

Foundation (EFF) to the one who �rst dis
overs a prime number of ten million digits or more. The largest prime

known as yet
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is 220 996 011 − 1. It has 6 320 430 digits. It was found in the Great Internet Mersenne Prime Sear
h

(GIMPS) proje
t on 17 November 2003. This programme is open to anyone who wants to join, the details 
an be

found on the web page www.mersenne.org.

Eu
lid knew them

Mersenne primes are the primes of the form 2k − 1. They are named after Martin Mersenne the great Fren
h

�s
ien
e organizer� of the 17th 
entury. He was in intense 
orresponden
e with Fermat, Des
artes and other leading

s
holars. However, these primes appeared as early as in the sear
h for perfe
t numbers by the an
ient Greeks. Perfe
t

numbers are those that are equal to the sum of their proper fa
tors. Su
h a number is 6 or 496. Theorem IX.36 of

Eu
lid's book Elements states:

If a geometri
 progression is formed starting at unity with a ratio of two until the sum of the series is a prime, and

the sum is multiplied by the last term, the produ
t will be a perfe
t number.

That is, if 1 + 2 + 22 + · · · + 2k−1 = 2k − 1 is a prime then 2k−1(2k − 1) is a perfe
t number. For example, with

k = 2 we get 6, and with k = 5 we get 496.

To prove (that is roughly what Eu
lid did, too), the fa
tors of the number n = 2k−1(2k − 1) should be added,

where q = 2k − 1 is a prime:

1 + 2 + 4 + · · ·+ 2k−1 + q + 2q + · · ·+ 2k−2q = 2k − 1 + q(2k−1 − 1) = q2k−1 = n.

The perfe
t number that Eu
lid's formula gives are all even. It still remains an open problem whether there exists an

odd perfe
t number at all (probably not). On the other hand, Eu
lid's algorithm generates all even perfe
t numbers,

as shown by Euler 2000 years later. Thus there is a one-to-one 
orresponden
e between even perfe
t numbers and

primes of the form 2k − 1. Unfortunately, we still do not know whether the number of su
h primes is �nite or in�nite.

(Most suspe
t that the latter is the 
ase.) As Paul Erd®s put it, �this question is perhaps the hardest, though not the

most pressing problem fa
ed by humankind.�

The mysterious list

It was also in 
onne
tion to perfe
t numbers that Mersenne investigated primes of the above form. In 1644, he

put forward his famous list stating that 2k − 1 is a prime if k = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 or 257 but a 
omposite

number for all other k less than 257.

Looking at the list, one immediately realizes that there are only prime indi
es. This is no 
oin
iden
e, sin
e if k is

a 
omposite number, that is k = uv, where u, v > 1, then the identity an − bn = (a − b)(an−1 + an−2b + · · · + bn−1)

an be applied to 2k − 1 = (2u)

v − 1v. It is divisible by 2u − 1, so 2k − 1 is a 
omposite number, too.

For small values of k it is easy to 
he
k whether 2k − 1 is a prime or not, but it be
omes harder pretty soon. Even

the testing of 231 − 1 takes very long if we do it by the method of trying the integers (larger than 1) up to the square

root of the number. (It is enough to try the primes but that requires that we know the primes up to the given limit.)

As Mersenne himself wrote, �to de
ide whether a 15 or 20-digit-number is a prime, a whole lifetime is not enough.�

That is why it is surprising that he took the 
ourage to 
ompile a list like that (based on 
onsiderations that are still

not fully known), and it is even more surprising that his list 
ontains only �ve errors: as it was shown 300(!) years

later, 267 − 1 and 2257 − 1 are in fa
t 
omposite numbers while the primes 261 − 1, 289 − 1 and 2107 − 1 are missing.

First things �rst

Of 
ourse, Mersenne 
ould have been aware of some results that would have made it easier to �nd the prime fa
tors

of a number of the form Mp = 2p − 1, where p is a prime. (Su
h numbers are referred to as Mersenne numbers in the


onsiderations below.) One theorem states that (for p > 2) ea
h prime fa
tor of Mp is 2kp + 1 and also of the form

8j ± 1. For example, the prime fa
tors of M43 = 243 − 1 are of the forms 86k + 1 and 8j ± 1, and the smallest su
h

prime, 431 is indeed a fa
tor of M43. Similarly, in order to see that M31 is a prime, it is enough to make sure that it

is not divisible by any prime of the forms 248t+ 1 or 248t+ 63. This may be a reason for the index 31 being on the

list and 43 not being there (but it still does a

ount for the guessing of most of the numbers on the list.)

Now we will prove that the prime fa
tors of Mp are all of the form 2kp+ 1. The proof is based on the 
on
ept of

order.
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Let c and m be relative primes, and 
onsider the remainders of the powers of c, 1 = c0, c, c2, c3, . . . , cn, . . . divided

by m. Sin
e the number of remainders is �nite, there will be two powers ci and cj (0 ≤ i < j) that have the same

remainder, that is, m divides cj − ci = ci(cj−i − 1). Sin
e (c,m) = 1, it follows that cj−i − 1 is also divisible by m,

that is the remainder of cj−i
is 1. Let r be the smallest positive integer su
h that the remainder of cr is 1. Then the

remainders of 1 = c0, c, c2, c3, . . . , cn, . . . form a periodi
 sequen
e in whi
h the length of the (shortest) period is r.

That number r is de�ned as the order of the number c modulo m and denoted by om(c), whi
h is read out as �ordo

m c�.

We will also make use of Fermat's little theorem. It states that the remainder of cq−1
divided by the prime q is 1,

provided that q is not a fa
tor of c. It follows from the previous paragraph that the order of c divides q − 1, that is
oq(c) | q − 1.

Now let q be a prime fa
tor of the Mersenne number Mp = 2p − 1, where p > 2 is a prime. Then the remainder of

2p divided by q is 1. Thus oq(2) | p. Sin
e p is a prime and the remainder of 21 is not 1, oq(2) 
an only be p. Hen
e,

a

ording to the previous paragraph, it follows that p | q − 1 and sin
e q − 1 is even that means q = 2kp+ 1.
The 
on
ept of the order and the proof above is easier to formulate in terms of 
ongruen
es. a ≡ b (mod m) means

that a and b give the same remainder when divided by m, that is m | a − b. The order of c mod m is the smallest

positive integer r for whi
h cr ≡ 1 (mod m). Fermat's little theorem states that

cq−1 ≡ 1 (mod q)

if q is a prime and c is not divisible by q, that is cq ≡ c (mod q) for all c. The property of the order being the length

of a period means that

ci ≡ cj (mod m) ⇐⇒ i ≡ j (mod om(c)).

The statement that the prime fa
tors of Mp are of the form 8j ± 1 
an be proved by using the theory of quadrati


residues, with the help of the so-
alled Legendre symbols.

The perennial test

It was Edouard Lu
as in 1876 who made the �rst brea
h in the 
orre
tness of Mersenne's list. He introdu
ed a


ompletely di�erent method that remains in use to this day. The more than 200 000 
omputers linked together in a

network for the GIMPS proje
t also use his test to sear
h for Mersenne primes. The test is based on the re
urren
e

a1 = 4, an+1 = a2n − 2: For a prime p > 2, Mp = 2p − 1 is a prime if and only if Mp | ap−1.

For example, if p = 7 then a1 = 4, a2 = 14, a3 = 194 ≡ −60 (mod 127), a4 ≡ 3598 ≡ 42 (mod 127), a5 ≡ 1762 ≡
−16 (mod 127), a6 ≡ 254 ≡ 0 (mod 127) therefore, M7 = 127 is a prime.

The above example is only an illustration, it is for large indi
es that the method is really powerful. Lu
as used this

test in 1876 to show that M67 was a 
omposite number, without being able to present a single fa
tor. It was more

than twenty-�ve years later that Cole managed to fa
tor M67. Lu
as also proved that M127 was indeed a prime, and

that remained the largest prime known until the advent of 
omputers.

As seen in the illustration above, it is not ne
essary to 
al
ulate the numbers ai themselves, it is enough to 
onsider

their remainders when divided by Mp. The remainder is very simple to �nd with the help of a 
omputer sin
e in binary

notation Mp 
onsists of all ones. Thus the task is similar to �nding the remainder of a number in de
imal notation,

say 21 357 246 divided by 999: sin
e the remainder of 103 and all 103k is always 1,

21 357 246 = 21 · 106 + 357 · 103 + 246 ≡ 21 + 357 + 246 ≡ 624 (mod 999),

that is the remainder is obtained by simply shifting 
ertain sequen
es of digits.

A taste of another number system

We will show the su�
ien
y of the test: If

(1) Mp | ap−1,

then Mp is a prime.

(The proof of the 
ondition being ne
essary uses similar te
hniques, and it also requires the Legendre symbol

mentioned before.)

In the proof, we will use the basi
 properties of the notions of divisibility, 
ongruen
y and order introdu
ed for

numbers of the form a+ b
√
3 (where a, b are integers). These work in the same way as in the set of integers.

It is easy to show by indu
tion that ak =
(

2 +
√
3
)2

k−1

+
(

2 −
√
3
)2

k−1

. Hen
e 
ondition (1) is equivalent to the

divisibility

Mp

∣

∣

(

2 +
√
3
)2

p−2

+
(

2−
√
3
)2

p−2

.

2



Multiplying the right-hand side by

(

2 +
√
3
)2

p−2

and using

(

2−
√
3
)(

2 +
√
3
)

= 1, we have

(2) Mp

∣

∣

(

2 +
√
3
)2

p−1

+ 1, that is

(

2 +
√
3
)2

p−1

≡ −1 (mod Mp).

In order to dedu
e from (2) that Mp is a prime we need the following lemma:

If q > 3 is an arbitrary prime, then

(3)
(

a+ b
√
3
)q ≡ a+ b

√
3 or a− b

√
3 (mod q).

Proof for the lemma: From the binomial theorem,

(4)
(

a+ b
√
3
)q

= aq +

(

q

1

)

aq−1b
√
3 +

(

q

2

)

aq−23b2 + · · ·+ bq3
q−1

2

√
3.

A

ording to Fermat's little theorem, aq ≡ a (mod q) and bq ≡ b (mod q) and sin
e q is a prime,

(

q

1

)

,

(

q

2

)

, . . . ,

(

q

q − 1

)

are all divisible by q. Finally, by virtue of Fermat's little theorem again,

q

∣

∣

∣

(

3
q−1

2

)2

− 1 =
(

3
q−1

2 − 1
)(

3
q−1

2 + 1
)

,

and sin
e q is a prime it will always divide one of the fa
tors, that is 3
q−1

2 ≡ ±1 (mod q). Lemma (3) now follows if

these 
ongruen
es are substituted into (4).

Now we 
an resume the proof of the theorem: assume that (2) is true and let q be a prime fa
tor of Mp. (It is 
lear

that q > 3 here.) We need to show that q = Mp. Then the 
ongruen
y mod q in (2) is also true, that is

(5)
(

2 +
√
3
)2

p−1

≡ −1 (mod q).

By squaring, we have

(6)
(

2 +
√
3
)2

p

≡ 1 (mod q).

It follows from (5), (6) and the properties of the order that oq
(

2+
√
3
)
∣

∣ 2p but oq
(

2+
√
3
)

∤ 2p−1
, that is oq

(

2+
√
3
)

= 2p.

On the other hand, it follows from (3) that

(

2 +
√
3
)q ≡ 2±

√
3 (mod q). If the + sign is valid here, then

(

2 +
√
3
)q−1

=
(

2−
√
3
)(

2 +
√
3
)q ≡

(

2−
√
3
)(

2 +
√
3
)

= 1 (mod q),

and thus oq
(

2 +
√
3
)

= 2p ≤ q − 1, whi
h is impossible sin
e q ≤ Mp = 2p − 1.
If the − sign is valid, then it follows similarly that

(

2 +
√
3
)q+1 ≡ 1 (mod q),

so oq
(

2 +
√
3
)

= 2p ≤ q + 1. Sin
e q ≤ Mp = 2p − 1, it follows that q = Mp, that is Mp is a prime, indeed.

Who is going to win?

There is a good 
han
e that the one hundred thousand dollars of EFF will be awarded for a Mersenne prime,

though other 
ompetitors are 
oming up, too. The list of the largest primes known on 17 January 2004 is lead by three

Mersenne primes, but the fourth pla
e is taken by 5359 · 25 054 502 + 1 (a number of more than one and a half million

digits) found in De
ember(!) 2003. Su
h numbers of the form r ·2k+1, with a little lu
k, are also relatively easy to test

if r is a small odd number. In addition, primes of this type probably o

ur more frequently than Mersenne primes, so

it may happen that a number of at least ten million digits of this kind will be found sooner than a Mersenne prime.

However, Mersenne primes establish a wonderful inter
onne
tion of more than two thousand years of mathemati
s,

leaving enough work to be done for another two thousand years, and the real winners may be those who are able to


ontribute to theory as well.
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