
As it was reported in the 2004/1 issue of KöMaL, the above sum will be paid as a prize by the Eletroni Frontier

Foundation (EFF) to the one who �rst disovers a prime number of ten million digits or more. The largest prime

known as yet
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is 220 996 011 − 1. It has 6 320 430 digits. It was found in the Great Internet Mersenne Prime Searh

(GIMPS) projet on 17 November 2003. This programme is open to anyone who wants to join, the details an be

found on the web page www.mersenne.org.

Eulid knew them

Mersenne primes are the primes of the form 2k − 1. They are named after Martin Mersenne the great Frenh

�siene organizer� of the 17th entury. He was in intense orrespondene with Fermat, Desartes and other leading

sholars. However, these primes appeared as early as in the searh for perfet numbers by the anient Greeks. Perfet

numbers are those that are equal to the sum of their proper fators. Suh a number is 6 or 496. Theorem IX.36 of

Eulid's book Elements states:

If a geometri progression is formed starting at unity with a ratio of two until the sum of the series is a prime, and

the sum is multiplied by the last term, the produt will be a perfet number.

That is, if 1 + 2 + 22 + · · · + 2k−1 = 2k − 1 is a prime then 2k−1(2k − 1) is a perfet number. For example, with

k = 2 we get 6, and with k = 5 we get 496.

To prove (that is roughly what Eulid did, too), the fators of the number n = 2k−1(2k − 1) should be added,

where q = 2k − 1 is a prime:

1 + 2 + 4 + · · ·+ 2k−1 + q + 2q + · · ·+ 2k−2q = 2k − 1 + q(2k−1 − 1) = q2k−1 = n.

The perfet number that Eulid's formula gives are all even. It still remains an open problem whether there exists an

odd perfet number at all (probably not). On the other hand, Eulid's algorithm generates all even perfet numbers,

as shown by Euler 2000 years later. Thus there is a one-to-one orrespondene between even perfet numbers and

primes of the form 2k − 1. Unfortunately, we still do not know whether the number of suh primes is �nite or in�nite.

(Most suspet that the latter is the ase.) As Paul Erd®s put it, �this question is perhaps the hardest, though not the

most pressing problem faed by humankind.�

The mysterious list

It was also in onnetion to perfet numbers that Mersenne investigated primes of the above form. In 1644, he

put forward his famous list stating that 2k − 1 is a prime if k = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 or 257 but a omposite

number for all other k less than 257.

Looking at the list, one immediately realizes that there are only prime indies. This is no oinidene, sine if k is

a omposite number, that is k = uv, where u, v > 1, then the identity an − bn = (a − b)(an−1 + an−2b + · · · + bn−1)
an be applied to 2k − 1 = (2u)

v − 1v. It is divisible by 2u − 1, so 2k − 1 is a omposite number, too.

For small values of k it is easy to hek whether 2k − 1 is a prime or not, but it beomes harder pretty soon. Even

the testing of 231 − 1 takes very long if we do it by the method of trying the integers (larger than 1) up to the square

root of the number. (It is enough to try the primes but that requires that we know the primes up to the given limit.)

As Mersenne himself wrote, �to deide whether a 15 or 20-digit-number is a prime, a whole lifetime is not enough.�

That is why it is surprising that he took the ourage to ompile a list like that (based on onsiderations that are still

not fully known), and it is even more surprising that his list ontains only �ve errors: as it was shown 300(!) years

later, 267 − 1 and 2257 − 1 are in fat omposite numbers while the primes 261 − 1, 289 − 1 and 2107 − 1 are missing.

First things �rst

Of ourse, Mersenne ould have been aware of some results that would have made it easier to �nd the prime fators

of a number of the form Mp = 2p − 1, where p is a prime. (Suh numbers are referred to as Mersenne numbers in the

onsiderations below.) One theorem states that (for p > 2) eah prime fator of Mp is 2kp + 1 and also of the form

8j ± 1. For example, the prime fators of M43 = 243 − 1 are of the forms 86k + 1 and 8j ± 1, and the smallest suh

prime, 431 is indeed a fator of M43. Similarly, in order to see that M31 is a prime, it is enough to make sure that it

is not divisible by any prime of the forms 248t+ 1 or 248t+ 63. This may be a reason for the index 31 being on the

list and 43 not being there (but it still does aount for the guessing of most of the numbers on the list.)

Now we will prove that the prime fators of Mp are all of the form 2kp+ 1. The proof is based on the onept of

order.
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Let c and m be relative primes, and onsider the remainders of the powers of c, 1 = c0, c, c2, c3, . . . , cn, . . . divided

by m. Sine the number of remainders is �nite, there will be two powers ci and cj (0 ≤ i < j) that have the same

remainder, that is, m divides cj − ci = ci(cj−i − 1). Sine (c,m) = 1, it follows that cj−i − 1 is also divisible by m,

that is the remainder of cj−i
is 1. Let r be the smallest positive integer suh that the remainder of cr is 1. Then the

remainders of 1 = c0, c, c2, c3, . . . , cn, . . . form a periodi sequene in whih the length of the (shortest) period is r.

That number r is de�ned as the order of the number c modulo m and denoted by om(c), whih is read out as �ordo

m c�.

We will also make use of Fermat's little theorem. It states that the remainder of cq−1
divided by the prime q is 1,

provided that q is not a fator of c. It follows from the previous paragraph that the order of c divides q − 1, that is
oq(c) | q − 1.

Now let q be a prime fator of the Mersenne number Mp = 2p − 1, where p > 2 is a prime. Then the remainder of

2p divided by q is 1. Thus oq(2) | p. Sine p is a prime and the remainder of 21 is not 1, oq(2) an only be p. Hene,

aording to the previous paragraph, it follows that p | q − 1 and sine q − 1 is even that means q = 2kp+ 1.
The onept of the order and the proof above is easier to formulate in terms of ongruenes. a ≡ b (mod m) means

that a and b give the same remainder when divided by m, that is m | a − b. The order of c mod m is the smallest

positive integer r for whih cr ≡ 1 (mod m). Fermat's little theorem states that

cq−1 ≡ 1 (mod q)

if q is a prime and c is not divisible by q, that is cq ≡ c (mod q) for all c. The property of the order being the length

of a period means that

ci ≡ cj (mod m) ⇐⇒ i ≡ j (mod om(c)).

The statement that the prime fators of Mp are of the form 8j ± 1 an be proved by using the theory of quadrati

residues, with the help of the so-alled Legendre symbols.

The perennial test

It was Edouard Luas in 1876 who made the �rst breah in the orretness of Mersenne's list. He introdued a

ompletely di�erent method that remains in use to this day. The more than 200 000 omputers linked together in a

network for the GIMPS projet also use his test to searh for Mersenne primes. The test is based on the reurrene

a1 = 4, an+1 = a2n − 2: For a prime p > 2, Mp = 2p − 1 is a prime if and only if Mp | ap−1.

For example, if p = 7 then a1 = 4, a2 = 14, a3 = 194 ≡ −60 (mod 127), a4 ≡ 3598 ≡ 42 (mod 127), a5 ≡ 1762 ≡
−16 (mod 127), a6 ≡ 254 ≡ 0 (mod 127) therefore, M7 = 127 is a prime.

The above example is only an illustration, it is for large indies that the method is really powerful. Luas used this

test in 1876 to show that M67 was a omposite number, without being able to present a single fator. It was more

than twenty-�ve years later that Cole managed to fator M67. Luas also proved that M127 was indeed a prime, and

that remained the largest prime known until the advent of omputers.

As seen in the illustration above, it is not neessary to alulate the numbers ai themselves, it is enough to onsider

their remainders when divided by Mp. The remainder is very simple to �nd with the help of a omputer sine in binary

notation Mp onsists of all ones. Thus the task is similar to �nding the remainder of a number in deimal notation,

say 21 357 246 divided by 999: sine the remainder of 103 and all 103k is always 1,

21 357 246 = 21 · 106 + 357 · 103 + 246 ≡ 21 + 357 + 246 ≡ 624 (mod 999),

that is the remainder is obtained by simply shifting ertain sequenes of digits.

A taste of another number system

We will show the su�ieny of the test: If

(1) Mp | ap−1,

then Mp is a prime.

(The proof of the ondition being neessary uses similar tehniques, and it also requires the Legendre symbol

mentioned before.)

In the proof, we will use the basi properties of the notions of divisibility, ongrueny and order introdued for

numbers of the form a+ b
√
3 (where a, b are integers). These work in the same way as in the set of integers.

It is easy to show by indution that ak =
(

2 +
√
3
)2

k−1

+
(

2 −
√
3
)2

k−1

. Hene ondition (1) is equivalent to the

divisibility

Mp

∣

∣

(

2 +
√
3
)2

p−2

+
(

2−
√
3
)2

p−2

.

2



Multiplying the right-hand side by

(

2 +
√
3
)2

p−2

and using

(

2−
√
3
)(

2 +
√
3
)

= 1, we have

(2) Mp

∣

∣

(

2 +
√
3
)2

p−1

+ 1, that is

(

2 +
√
3
)2

p−1

≡ −1 (mod Mp).

In order to dedue from (2) that Mp is a prime we need the following lemma:

If q > 3 is an arbitrary prime, then

(3)
(

a+ b
√
3
)q ≡ a+ b

√
3 or a− b

√
3 (mod q).

Proof for the lemma: From the binomial theorem,

(4)
(

a+ b
√
3
)q

= aq +

(

q

1

)

aq−1b
√
3 +

(

q

2

)

aq−23b2 + · · ·+ bq3
q−1

2

√
3.

Aording to Fermat's little theorem, aq ≡ a (mod q) and bq ≡ b (mod q) and sine q is a prime,

(

q

1

)

,

(

q

2

)

, . . . ,

(

q

q − 1

)

are all divisible by q. Finally, by virtue of Fermat's little theorem again,

q

∣

∣

∣

(

3
q−1

2

)2

− 1 =
(

3
q−1

2 − 1
)(

3
q−1

2 + 1
)

,

and sine q is a prime it will always divide one of the fators, that is 3
q−1

2 ≡ ±1 (mod q). Lemma (3) now follows if

these ongruenes are substituted into (4).

Now we an resume the proof of the theorem: assume that (2) is true and let q be a prime fator of Mp. (It is lear

that q > 3 here.) We need to show that q = Mp. Then the ongrueny mod q in (2) is also true, that is

(5)
(

2 +
√
3
)2

p−1

≡ −1 (mod q).

By squaring, we have

(6)
(

2 +
√
3
)2

p

≡ 1 (mod q).

It follows from (5), (6) and the properties of the order that oq
(

2+
√
3
)
∣

∣ 2p but oq
(

2+
√
3
)

∤ 2p−1
, that is oq

(

2+
√
3
)

= 2p.

On the other hand, it follows from (3) that

(

2 +
√
3
)q ≡ 2±

√
3 (mod q). If the + sign is valid here, then

(

2 +
√
3
)q−1

=
(

2−
√
3
)(

2 +
√
3
)q ≡

(

2−
√
3
)(

2 +
√
3
)

= 1 (mod q),

and thus oq
(

2 +
√
3
)

= 2p ≤ q − 1, whih is impossible sine q ≤ Mp = 2p − 1.
If the − sign is valid, then it follows similarly that

(

2 +
√
3
)q+1 ≡ 1 (mod q),

so oq
(

2 +
√
3
)

= 2p ≤ q + 1. Sine q ≤ Mp = 2p − 1, it follows that q = Mp, that is Mp is a prime, indeed.

Who is going to win?

There is a good hane that the one hundred thousand dollars of EFF will be awarded for a Mersenne prime,

though other ompetitors are oming up, too. The list of the largest primes known on 17 January 2004 is lead by three

Mersenne primes, but the fourth plae is taken by 5359 · 25 054 502 + 1 (a number of more than one and a half million

digits) found in Deember(!) 2003. Suh numbers of the form r ·2k+1, with a little luk, are also relatively easy to test

if r is a small odd number. In addition, primes of this type probably our more frequently than Mersenne primes, so

it may happen that a number of at least ten million digits of this kind will be found sooner than a Mersenne prime.

However, Mersenne primes establish a wonderful interonnetion of more than two thousand years of mathematis,

leaving enough work to be done for another two thousand years, and the real winners may be those who are able to

ontribute to theory as well.
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