A 44. Nemzetközi Fizikai Diákolimpia elméleti feladatai¹

1. feladat. A Maribo-meteorit

Bevezetés. A meteoroid egy kisbolygóból vagy üstökösből kiszakadó kisméretű test (mérete kisebb 1 méternél). A talajba csapódott meteoroidot meteoritnak nevezzük.

2009. január 17-én este a Balti-tenger közelében sok ember látta egy meteoroid izzó csóváját (tűzlabdáját), ahogy áthalad a Föld légkörén. Svédországban egy biztonsági kamera videófelvételt készített az eseményről, amit az 1(a). *ábra* mutat. A fényképek és szemtanúk beszámolói alapján szűkíteni lehetett a becsapódás helyét, és hat héttel később a déldániai Maribo város szomszédságában megtalálták a 0,025 kg tömegű meteoritot, amit azóta *Maribonak* neveznek. A Maribon végzett mérések, és égi pályájának vizsgálata érdekes eredményt mutat. A meteoroid kivételesen nagy sebességgel hatolt be a légkörbe. A kora $4,567 \cdot 10^9$ év, ami azt mutatja, hogy röviddel a Naprendszer születése után keletkezett. A Maribo-meteorit esetleg az *Encke-üstökös* része volt.

A Maribo sebessége. A tűzgolyó közel nyugati irányban, az északi iránnyal 285°-os szöget bezárva repült a becsapódás helye felé, ahol később megtalálták, ahogy az 1. *ábrán* látható. A meteoritot a biztonsági kamerától 195 km-re, az északi irányhoz képest 230°-os szögben találták meg.

1. ábra. (a) A svédországi biztonsági kamera által készített képek sorozata a Maribo mozgását mutatja, ahogy tűzgömbként áthalad a légkörön. (b) A két fényképet jellemző adatok: idő, azimut (fokokban, ahogy a C pontban lévő kamera felöl látni), és a magassági szög (szintén fokokban). Az azimut a horizont síkjában az északi iránytól az órajárással egyezően bezárt szög. A magassági szög a horizont síkjával bezárt szög. (c) Vázlat a Maribo

mozgásának (az ábrán nyíllal jelölt) irányáról az északi irányhoz (N) viszonyítva és a dániai landolás helye (M),

ahogy a kamera (C) látta. (Lásd még a hátsó belső borító színes fényképeit!)

1.1. A fentiek, valamint az 1. ábra adatainak a felhasználásával határozd meg a Maribo-meteoroid átlagsebességét a 155. és a 161. képkocka között eltelt időtartamra! A Föld felszínének görbülete és a meteoroidra ható gravitációs erő elhanyagolható.
(1,3 pont)

Megolvad-e az atmoszférában? A meteoroid levegőben való mozgása miatt a felső légkörben fellépő súrlódást bonyolult formula írja le. A közegellenállási erő függ a meteoroid levegőhöz viszonyított sebességétől, valamint a légkör hőmérsékletétől és sűrűségétől. Elfogadható közelítést ad a légkör felső részében a közegellenállási erőre az $F = k\rho_{\rm atm}Av^2$ kifejezés, ahol k egy állandó (közegellenállási együttható), $\rho_{\rm atm}$ a légkör sűrűsége, A a meteoroid sebességre merőleges keresztmetszete, és v a sebessége.

A következő egyszerűsítő feltevések felhasználásával vizsgáljuk a meteoroidot: amikor behatol a légkörbe a test, gömb alakú, tömege $m_{\rm M} = 30$ kg, sugara $R_{\rm M} = 0.13$ m, hőmérséklete $T_0 = 200$ K, és a sebessége $v_{\rm M} = 2.91 \cdot 10^4$ m/s. A légkör sűrűsége állandó (a Föld felszíne felett 40 km magasságban), $\rho_{\rm atm} = 4.1 \cdot 10^{-3}$ kg/m³, és a közegellenállási együttható k = 0.60.

1.2a. Becsüld meg, hogy a meteoroid légkörbe való behatolását követően mennyi idő múlva változik a sebessége 10%-nyit, azaz csökken $v_{\rm M}$ -ről 0,90 $v_{\rm M}$ -re. A gravitációs erő meteoroidra való hatását elhanyagolhatod, és felteheted, hogy a meteoroid alakja és tömege nem változik. (0,7 pont)

1.2b. Számold ki, hányszor nagyobb a légkörbe hatoló meteoroid E_{kin} mozgási energiája a teljes megolvasztásához szükséges E_{olv} energiánál! (Az adatokat a mellékelt táblázatból¹ keresd ki)! (0,3 pont)

A Maribo melegedése a légkörön való áthatolás alatt. Amikor a Maribo-meteoroidkő (röviden: kő) szuperszonikus sebességgel elérte a légkört, akkor egy tűzgömbnek látszott, mert a körülötte levő levegő felizzott. Ennek következtében a Maribo csak a legkülső, felszíni rétegén keresztül vett fel hőt. Tekintsük a Maribot egy homogén gömbnek, amelynek sűrűsége $\rho_{k\delta}$, fajhője $c_{k\delta}$ és hővezetési tényezője $k_{k\delta}$ (az adatokat a táblázatból keresd ki)! Továbbá, a légkörbe lépéskor a meteoroid hőmérséklete $T_0 = 200$ K volt. A súrlódás miatt a meteoroid felszíni hőmérséklete a légkörben való esés alatt állandó $T_s = 1000$ K. Ennek következtében a meteoroid belseje is fokozatosan felmelegszik.

Miután a légkörben már t ideig esett, a Maribo felszínén egy x vastagságú réteg hőmérséklete válik T_0 -nál jóval melegebbé. Ez a vastagság dimenzióanalízis segítségével megbecsülhető. Feltételezhető, hogy a vastagság nagyságrendje egyszerűen a termodinamikai paraméterek ismeretlen hatványainak szorzata, azaz $x \approx t^{\alpha} \rho_{k\sigma}^{\beta} c_{k\sigma}^{\gamma} k_{k\sigma}^{\delta}$.

¹A hivatalos megoldást és a mérési feladatokat a KöMaL novemberi számában ismertetjük.

A feladatok kidolgozására 5 óra állt rendelkezésre. A három elméleti feladatra összesen 30 pontot lehetett kapni. A részfeladatok után közölt pontszámok az egyes kérdések nehézségi fokára utalnak.

¹ A táblázat a feladatsor végén található.

1.3a. Dimenzióanalízis segítségével határozd meg az α , β , γ és δ kitevők értékét! (0.6 pont)

1.3b. Ez alapján számold ki, hogy mekkora az x vastagság t = 0.5 s idővel a légkörbe történő belépés után, valamint határozd meg az $x/R_{\rm M}$ arányt! (0,4 pont)

A meteorit kora. A radioaktív izotópok kémiai tulajdonságai különbözhetnek, és így egy adott meteroitban az ásványok kristályosodása során egyes kristályszemcsékben bizonyos radioaktív izotópok koncentrációja magasabb, másokban alacsonyabb. Ez a különbség lehetővé teszi a meteorit korának meghatározását a radioaktív ásványtartalmának elemzésével.

Konkrét példaként vizsgáljuk a ⁸⁷Rb izotóp (37-es rendszámú elem) bomlását, amelynek felezési ideje $T_{1/2} = 4.9 \cdot 10^{10}$ év, és végterméke a ⁸⁷Sr stabil izotóp (38-as rendszámú elem). Ennek mennyiségét viszonyítjuk a meglevő, ugyancsak stabil ⁸⁶Sr izotópéhoz. Az ásványok kristályosodásakor a ⁸⁷Sr/⁸⁶Sr arány minden ásványszemcsében azonos volt, míg a ⁸⁷Rb/⁸⁶Sr arány különbözött. Az idő múlásával azonban a ⁸⁷Rb izotóp mennyisége csökkent, és ennek következtében a ⁸⁷Sr izotóp mennyisége nőtt. Így az ásványszemcsékben mostanra a ⁸⁷Sr/⁸⁶Sr arány különbözővé vált. A 2. ábra vízszintes tengelyein a kristályosodás időpontjában fennállt ⁸⁷Rb/⁸⁶Sr arány van feltüntetve.

2. ábra. (a) A különböző ásványszemcsékben fennálló 87 Sr/ 86 Sr arány a kristályosodás t = 0 időpontjában (üres körök), illetve jelenleg (tele körök). (b) A meteorit három ásványszemcséjében mért, a jelenlegi adatokra illeszkedő egyidejűségi vonal

1.4a. Írd le a ⁸⁷₃₇Rb izotóp ⁸⁷₃₈Sr-ra való bomlásának egyenletét! (0,3 pont)1.4b. Mutasd meg, hogy ugyanabból a meteoritból, különböző ásványi szemcsékből származó minták esetén egyenest kapunk, ha a jelenlegi ⁸⁷Sr/⁸⁶Sr arányt a jelenlegi ⁸⁷Rb/⁸⁶Sr arány függvényében ábrázoljuk! Ezt az egyenest egyidejűségi vonalnak nevezzük. Mutasd meg továbbá, hogy az egyidejűségi vonal meredeksége $a(t) = (e^{\lambda t} - 1)$, ahol t a kristályosodás óta eltelt idő, λ pedig a bomlási állandó, amely fordítottan arányos a $T_{1/2}$ felezési idővel! (0,7 pont)**1.4c.** Határozd meg a meteorit $\tau_{\rm M}$ életkorát az 2(b). ábrán látható egyidejűségi vonal alapján! (0,4 pont)

Az Encke-üstökös, ahonnan a Maribo-meteorit származhat. A Nap körül keringő Encke-üstökös Naptól mért legnagyobb és legkisebb távolsága:

$$a_{\min} = 4.95 \cdot 10^{10} \text{ m}$$
 és $a_{\max} = 6.16 \cdot 10^{11} \text{ m}.$

1.5. Számítsd ki az Encke-üstökös t_{Encke} keringési idejét!

(0.6 pont)Aszteroida-becsapódás hatása a Földre. 65 millió évvel ezelőtt egy óriási aszteroida csapódott a Földbe. Az aszteorida sűrűsége $\rho_{\text{aszt.}} = 3.0 \cdot 10^3 \text{ kg m}^{-3}$, sugara $R_{\text{aszt.}} = 5.0 \text{ km}$ és becsapódási sebessége $v_{\text{aszt.}} = 2.5 \cdot 10^4 \text{ m/s}^{-3}$ volt. Ez a becsapódás a földi élet nagy részének kihalását eredményezte, és létrehozta a hatalmas Chicxulub krátert. Képzeljük el, mi történne, ha ma ütközne tökéletesen rugalmatlanul egy ugyanilyen aszteroida a Földnek. Tudjuk, hogy a Föld tehetetlenségi nyomatéka 0,83-szor akkora, mint egy ugyanolyan tömegű és sugarú homogén gömbé. Az Mtömegű, R sugarú homogén gömb tehetetlenségi nyomatéka $(2/5)MR^2$. Az ütközéskor a Föld pályájának változásától tekintsünk el.

1.6a. Tegyük föl, hogy az aszteroida az északi póluson csapódik be. Határozd meg a Föld forgástengelyének maximális lehetséges szögeltérülését a becsapódás után! (0,7 pont)

1.6b. Tegyük föl, hogy az aszteroida az Egyenlítőre csapódik be radiális (függőleges) irányból. Határozd meg a Föld forgási periódusának $\Delta \tau_{\text{függ.}}$ megváltozását az ütközés után! (0,7 pont)

1.6c. Tegyük föl, hogy az aszteroida az Egyenlítőre csapódik be a felszínt érintő (vízszintes) irányból, az Egyenlítő síkjában. Határozd meg Föld forgási periódusának $\Delta \tau_{\text{érint}\delta}$ megváltozását az ütközés után! (0,7 pont)

Maximális becsapódási sebesség. Tekintsünk egy olyan égitestet, amely gravitációsan kötött a Naprendszerhez, és $v_{
m becs}$ sebességgel becsapódik a Föld felszínére! Kezdetben elhanyagolhatjuk a Földnek a testre gyakorolt gravitációs hatását. Tekintsünk el továbbá a légköri súrlódástól, a többi égitest hatásától és a Föld forgásától!

1.7. Határozd meg a v_{becs} becsapódási sebesség legnagyobb lehetséges v_{becs}^{max} értékét! (1,6 pont)

2. feladat. Plazmonos gőzfejlesztő készülék

Bevezetés. Ebben a feladatban egy hatékony, kísérletileg is működő gőzfejlesztési eljárást fogunk tanulmányozni. Víz és benne eloszlatott, nanométeres méretű, gömb alakú ezüstgolyócskák (literenként csak körülbelül 10^{13} darab) keverékét fókuszált fénynyalábbal világítjuk meg. A fény egy részét a nanogolyócskák elnyelik, így felmelegednek és közvetlen környezetükben gőzt keltenek anélkül, hogy a teljes vízmennyiséget felmelegítenék. A keletkező gőz buborékok formájában távozik a rendszerből. Jelenleg a folyamat még nem minden részletében tisztázott, de a felmelegedés jelensége a fémes nanogolyócskák elektronjainak együttes oszcillációján alapuló fényelnyeléssel magyarázható. A berendezést plazmonos gőzfejlesztőnek nevezzük.

3. ábra. (a) Egy R sugarú, gömb alakú, semleges nanogolyócska a koordináta-rendszer origójában. (b) A Tömör gömb homogén, pozitív ρ töltéssűrűséggel (közepesen szürke), benne egy kisebb R_1 sugarú, $\boldsymbol{x}_d = \boldsymbol{x}_d \boldsymbol{e}_x$ vektorral eltolt középpontú, gömb alakú, töltéssemleges tartománnyal (0, halványszürke). (c) A koordináta-rendszer origójában rögzített nanogolyócska pozitív ρ töltéssűrűségű ezüstionjai (közepesen szürke), és az origóhoz képest \boldsymbol{x}_p vektorral eltolt középpontú ($\boldsymbol{x}_p \ll R$), gömb alakú, negatív $-\rho$ töltéssűrűségű elektronfelhő (sötétszürke). (d) Külső homogén $\boldsymbol{E}_0 = -E_0 \boldsymbol{e}_x$ elektromos tér. Időfüggő \boldsymbol{E}_0 esetén az elektronfelhő $\boldsymbol{v} = d\boldsymbol{x}_P/dt$ sebességgel mozog. (e) A z irányba haladó, ω_P körfrekvenciájú, S intenzitású, monokromatikus fénynyalábbal megvilágított téglatest alakú ($h \times h \times a$) tartály, benne a vízben eloszlatott nanogolyócskákkal

Egyetlen, gömb alakú, ezüst nanogolyócska. Ebben a részfeladatban tekintsünk egy R = 10,0 nm sugarú, gömb alakú ezüst nanogolyócskát, melynek középpontja a koordináta-rendszerünk origójában van rögzítve, ahogy az a $\Im(a)$. *ábrán* látható. Minden bekövetkező mozgás, erőhatás és erőtér párhuzamos a vízszintes x tengellyel (amely az e_x irányvektorral adható meg). A nanogolyócska vezetési elektronjai a golyócska teljes térfogatában szabadon mozoghatnak anélkül, hogy bármelyik ezüstatomhoz kötődnének. Az ezüstatomok pozitív ionokként vannak jelen a golyócskában, mindegyik egy-egy elektronnal járul hozzá a szabad töltéshordozókhoz.

2.1. Határozd meg a következő mennyiségeket: a nanogolyócska V térfogata és M tömege; a nanogolyócskában található ezüstionok N száma és ϱ töltéssűrűsége; valamint a szabad elektronok n számsűrűsége (koncentrációja), összes Q töltése és összes m₀ tömege. (0,7 pont)

Elektromos mező egy töltött gömbön belüli töltéssemleges tartományban. Ebben a részfeladatban tegyük fel, hogy minden anyag relatív permittivitása $\varepsilon = 1$. Homogén ρ töltéssűrűségű, R sugarú gömb belsejében $-\rho$ töltéssűrűség hozzáadásával egy kisebb, R_1 sugarú, töltéssemleges tartományt hozunk létre, melynek középpontja az Rsugarú gömb középpontjához képest $\mathbf{x}_d = x_d \mathbf{e}_x$ vektorral el van tolva (lásd a $\beta(b)$. *ábrát*).

2.2. Mutasd meg, hogy a töltéssemleges tartományban az elektromos tér homogén és $\mathbf{E} = A(\varrho/\varepsilon_0) \mathbf{x}_d$ alakú! Határozd meg az A szorzótényező értékét! (1,2 pont)

A kitérített elektronfelhőre ható visszatérítő erő. A következőkben a szabad elektronok együttes mozgását vizsgáljuk. Ennek érdekében modellezzük a szabad elektronok összességét egyetlen, negatívan töltött, homogén $-\varrho$ töltéssűrűségű, \boldsymbol{x}_p középpontú gömbbel, amely az x tengely mentén mozoghat az origóhoz rögzített középpontú, pozitív töltésű gömbhöz (ezüstionok) képest (lásd a $\Im(c)$. *ábrát!*). Tegyük fel, hogy egy külső $\boldsymbol{F}_{küls\delta}$ erő hatására az elektronfelhő $\boldsymbol{x}_p = \boldsymbol{x}_p \, \boldsymbol{e}_x$ vektorral elmozdul eredeti helyzetéből, ahol $\boldsymbol{x}_p \ll R$. A nanogolyócska – a két szélén megjelenő kicsiny töltéstől eltekintve – a belsejében töltéssemleges marad.

2.3. \mathbf{x}_p és n felhasználásával fejezd ki a következő két mennyiséget: az elektronfelhőre ható \mathbf{F} visszatérítő erőt, valamint az elektronfelhő elmozdítása során végzett $W_{\rm el}$ munkát. (1,2 pont)

Ezüst nanogolyócska időben állandó, külső elektromos térben. Egy nanogolyócskát vákuumban $E_0 = -E_0 e_x$ homogén elektromos térbe helyezünk, melynek hatására az elektronfelhő $F_{küls\delta}$ erőhatást érezve kicsiny x_p távolsággal elmozdul, ahol $|x_p| \ll R$.

2.4. Határozd meg az elektronfelhő x_p elmozdulását E_0 és n felhasználásával! Határozd meg az elmozdulás közben a nanogolyócska közepén átmenő (y, z) síkon keresztülhaladó $-\Delta Q$ töltést R, n és x_p függvényében! (0,6 pont)

Az ezüst nanogolyócska helyettesítő kapacitása és induktivitása. Mind időben állandó, mind változó E_0 elektromos térben a nanogolyócska modellezhető egy megfelelő elektromos áramkörrel. A helyettesítő képbeli kapacitás meghatározható, ha a ΔQ töltés szétválasztásához szükséges $W_{\rm el}$ munkát megfeleltetjük egy $\pm \Delta Q$ töltéssel ellátott kondenzátor energiájának. A töltésszétválasztás a helyettesítő képben V_0 feszültséget eredményez a fegyverzetek között.

2.5a. Fejezd ki a rendszer helyettesítő képének C kapacitását ε_0 és R felhasználásával, és számítsd ki numerikus értékét! (0,7 pont)

2.5b. E_0 és R felhasználásával fejezd ki azt a V_0 feszültséget, amit a helyettesítő képbeli kondenzátorra kellene kapcsolni ahhoz, hogy ΔQ töltése legyen! (0,4 pont)

Időfüggő E_0 elektromos tér esetén az elektronfelhő mozgásba jön, sebességét jelölje $v = v \cdot e_x$ (lásd a $\mathcal{J}(d)$. *ábrát!*). Ennek következtében az elektronok W_{kin} mozgási energiára tesznek szert és a rögzített yz-síkon átfolyó I erősségű áramot okoznak. Az elektronfelhő mozgási energiája megfeleltethető egy I árammal átjárt L induktivitás energiájának.

(0.7 pont)

2.6a. Fejezd ki a W_{kin} és I mennyiségeket v felhasználásával!

2.6b. Fejezd ki a helyettesítő képbeli L induktivitást a golyócska R sugarának, az elektron e töltésének és m_e tömegének, valamint az n elektronszám-sűrűség felhasználásával, majd számítsd ki numerikus értékét! (0.5 pont)

Az ezüst nanogolyócska plazmon rezonanciája. Az eddigiekből következik, hogy az egyensúlyi helyzetéből kitérített, majd elengedett elektronfelhő mozgása egy, a rezonanciafrekvenciával oszcilláló ideális LC-körrel modellezhető. Az elektronfelhő ilyen mozgását plazmon-rezonanciának hívják, a rezgés ω_p körfrekvenciája pedig az úgynevezett plazmon-körfrekvencia.

2.7a. Határozd meg az elektronfelhő ω_p plazmon-körfrekvenciáját az elektron e töltésének, m_e tömegének, az n elektronszámsűrűség és az ε_0 vákuum-permittivitás felhasználásával! (0,5 pont)

2.7b. Számítsd ki ω_p -t rad/s egységekben, valamint az $\omega = \omega_p$ körfrekvenciájú fény λ_p hullámhosszát nm egységekben! (0,4 pont)

Plazmon frekvenciájú fénnyel megvilágított ezüst nanogolyócska. A feladat további részében a nanogokörfrekvenciájú, lvócskát plazmon

 $S = \frac{1}{2}\varepsilon_0 E_0^2 = 1,00 \text{ MWm}^{-2} \text{ intenzitású, monokromatikus fénnyel világítjuk meg. Mivel a hullámhossz nagy } (\lambda_p \gg R),$ tekinthetjük úgy, hogy a nanogolyócska homogén, időben harmonikusan változó $E_0 = -E_0 \cos(\omega_p t) e_x$ elektromos térben helyezkedik el. Az E_0 tér hatására az elektronfelhő x_p középpontja is ugyanazon frekvenciával, $v = \mathrm{d}x_P/\mathrm{d}t$ sebességgel, állandó x_0 amplitúdóval rezegni kezd. Az elektronok eme rezgőmozgása a fény elnyeléséhez vezet. A nanogolyócska által befogott energia egy része a golyócska belsejében Joule-hővé alakul, a maradék része pedig szórt fény formájában újra kisugárzódik.

A Joule-hőt a szabad elektronoknak az ezüstionokkal való ritka, véletlenszerű, rugalmatlan ütközései okozzák. Az ütköző elektron a teljes mozgási energiáját elveszíti, ami az ezüstionok rezgéseivé (azaz hővé) alakul. Az ilyen ütközések közötti átlagos időtartam nanogolyóskára au \gg $1/\omega_p,$ aholezüst számoljunk a $= 5.24 \cdot 10^{-15}$ s értékkel!

 $\textbf{2.8a.} \ \textit{Fejezd} \ \textit{ki} \ a \ \textit{nanogolyócskában} \ \textit{fejlődő} \ \textit{Joule-hő} \ \textit{keletkezési} \ \textit{ütemének} \ (\textit{teljesítményének}) \ P_{h\delta} \ \textit{időátlagolt} \ \acute{ertékét}$ és az áramerősség négyetének $\langle I^2
angle$ időátlagát úgy, hogy a kifejezések expliciten tartalmazzák az elektronfelhő sebesség $négyzetének \langle v^2 \rangle időátlagát!$ (1,0 pont)

2.8b. Határozd meg a nanogolyócska helyettesítő képének ohmikus ellenállását, amely kapcsolatot teremt a fejlődő Joule-hő teljesítménye és az elektronfelhő I áramerőssége között. Számítsd ki numerikus értékét! (1,0 pont)

A beeső fénynyalábban a rezgő elektronfelhőn való szóródás (újrakibocsátás) következtében valamekkora $P_{\rm szórt}$ időátlagolt teljesítmény formájában veszteség lép fel. $P_{\text{szórt}}$ nagysága függ a szórócentrum x_0 amplitúdójától, Q töltésétől, ω_p körfrekvenciájától, valamint a fény tulajdonságaitól (a c fénysebességtől és a vákuum ε_0 permittivitásától). E négy változóval kifejezve $P_{\text{szórt}}$ a következő formulával adható meg:

$$P_{\rm szórt} = \frac{Q^2 x_0^2 \omega_p^4}{12 \, \pi \varepsilon_0 \, c^3}.$$

2.9. $P_{h\delta}$ analógiájára határozd meg a fényszórásnak megfelelő ekvivalens $P_{sz\delta rt}$ ohmikus ellenállást $P_{sz\delta rt}$ felhasználásával! Számítsd ki numerikus értékét is!

(1,0 pont)

Az előbbiekben tárgyalt helyettesítő áramköri elemeket sorosan RLC-körbe kapcsolva, majd az áramkört (a beeső fény E_0 térerőssége által meghatározott amplitúdójú) $V = V_0 \cos(\omega_p t)$ váltakozó feszültségre kapcsolva megkapjuk az oszcilláló térbe helyezett ezüst nanogolyócska modelljét.

2.10a. Ismert adatok felhasználásával határozd meg a $P_{h\sigma}$ és $P_{sz \circ rt}$ időátlagolt teljesítmény- veszteségek kifejezéseit, valamint az $\omega = \omega_p$ körfrekvenciájú beeső fény E_0 amplitúdóját! (1,2 pont)(0,3 pont)

2.10b. Határozd meg E_0 , $P_{h\delta}$, és $P_{sz\delta rt}$ numerikus értékét!

Gőzfejlesztés fénnyel. Az ezüst nanogolyócskákat $n_{ng} = 7,3 \cdot 10^{15} \text{ m}^{-3}$ koncentrációban elkeverjük vízben, majd a keveréket egy téglatest alakú, $h \times h \times a = 10 \times 10 \times 10 \text{ cm}^3$ méretű, átlátszó tartályba töltjük, végül a rendszert merőleges beeséssel plazmon frekvenciájú, $S = 1,00 \text{ MW m}^{-2}$ intenzitású fénnyel világítjuk meg (lásd a $\Im(e)$. *ábrát*!). A víz hőmérséklete $T_{h\delta} = 20$ °C, és a megfigyelésekkel összhangban feltehetjük, hogy stacionárius állapotban a nanogolyócskák Joule-hője teljes egészében $T_{g\delta z} = 110$ °C hőmérsékletű gőz keletkezésére fordítódik, a teljes víztömeg hőmérsékletének növelése nélkül.

készülék A plazmonos gőzfejlesztő termodinamikai hatásfokát az $= P_{g\delta z}/P_{\delta sszes}$ hányadosként definiáljuk, ahol $P_{g\delta z}$ az egész tartályban a gőz fejlesztésére fordítódó hőteljesítmény, $P_{\text{összes}}$ pedig a tartályra eső fény összes teljesítménye.

Bármely kiszemelt nanogolyócskát az idő legnagyobb részében víz helyett gőz veszi körül, ezért tárgyalható úgy, mintha vákuumban helyezkedne el.

2.11a. Számítsd ki numerikusan a plazmonos gőzfejlesztő készülék által az időegység alatt előállított vízgőz m_{gőz} tömegét a plazmon frekvenciájú, S intenzitású fénnyel való besugárzás folyamán! (0.6 pont)

2.11b. Számítsd ki numerikusan a plazmonos gőzfejlesztő készülék n termodinamikai hatásfokát! (0,2 pont)

3. feladat. A grönlandi jégsapka

Bevezetés. Ez a feladat a grönlandi jégsapkáról, a világ második legnagyobb összefüggő jégtakarójáról szól, ami a 4(a). ábrán látható. Egyszerűsített modellünkben Grönlandot egy 2L szélességű és 5L hosszúságú téglalapnak tekintjük, ahol a földfelszín a tengerszinttel azonos magasságban van, és a területét teljes mértékben összenyomhatatlan jég borítja (4(b). *ábra*). A jég $\rho_{jég}$ sűrűségét tekintsük állandónak! A jégsapka H(x) magassága nem függ az y koordinátától, és a magasság nulláról a maximális $H_{\rm m}$ értékig nő, ahogy a parttól, ($x = \pm L$) a téglalap észak-déli felezővonaláig (az y tengelyig, a "jégválasztóig") haladunk. Ez a magasságprofil a 4(c). *ábrán* látható.

4. ábra. (a) Grönland térképe, amely a jégsapka kiterjedését és a jégmentes parti területeket mutatja. (b) A grönlandi jégsapka durva modellje; egy jéggel borított, 2L és 5L oldalú, az (x, y) síkban fekvő téglalap. A jégválasztó vonal, azaz a jégsapka maximális, $H_{\rm m}$ magasságú gerince az y tengely felett fekszik. (c) A jégsapka (x, z) síkú (függőleges) síkmetszete, melyen a jégtakaró H(x) magasságprofilja látható. A H(x) magasság független az y koordinátától

a teljes 0 < y < 5L tartományban, és hirtelen nulla értékre esik y = 0-ban és y = 5L-ben. Az y tengely jelöli a jégválasztó vonal helyét. Az érthetőség kedvéért az ábra függőleges irányú léptéke nagyobb a vízszintes léptéknél. A jég sűrűsége konstans, $\rho_{jég}$

Két hasznos összefüggés. Ebben a részben felhasználhatod a következő integrált:

$$\int_{0}^{1} \sqrt{1-x} \, \mathrm{d}x = \frac{2}{3}$$

és az $(1+x)^a \approx 1 + ax$ közelítést, amely $|ax| \ll 1$ esetén érvényes.

A jégsapka magasságprofilja. Rövid időskálán a jégsapka egy összenyomhatatlan hidrosztatikai rendszer, melyben a H(x) magasságprofil időben állandó.

3.1. Add meg a jégtakaró belsejében a p(x, z) nyomást, mint a földfelszíntől (tengerszinttől) mért z magasság és a jégválasztó vonaltól mért x távolság függvényét! Hanyagold el a légköri nyomást! (0,3 pont)

Most tekints egy rögzített, egyensúlyban levő függőleges jégréteget, amely a kisméretű, vízszintes $\Delta x \Delta y$ alaplap fölött helyezkedik el, x és $x + \Delta x$ között, ahogy ezt a szaggatott vonalak mutatják a 4(c). *ábrán*! A Δy mérete nem számít. A jégréteg befelé és kifelé eső oldalának magasságkülönbsége miatt e két függőleges oldalon ható eredő erők vízszintes komponensei különböznek. Ezt a ΔF különbséget a vízszintes alaplapon ható $\Delta F = S_b \Delta x \Delta y$ súrlódási erő kompenzálja, amelyet a földfelszín fejt ki a $\Delta x \Delta y$ területű alapra, ahol $S_b = 100$ kPa.

3.2a. Igazold, hogy rögzített x esetén, ha $\Delta x \to 0$, akkor $S_b = kH dH/dx$, és add meg k-t! (0,9 pont) **3.2b.** Vezesd le a magasságprofilt megadó H(x) kifejezést a $\varrho_{jég}$, g, L, S_b, valamint a jégválasztótól mért x távolság függvényében! Az eredményből látható, hogy a jégsapka H_m legnagyobb magassága a $H_m \propto L^{1/2}$ egyenlet szerint skálázódik az L félszélességgel. (0,8 pont)

3.2c. Határozd meg azt a γ kitevőt, ami szerint a jégsapka teljes $V_{jég}$ térfogata skálázódik a téglalap alakú sziget A területével, $V_{jég} \propto A^{\gamma}$! (0,5 pont)

A jégsapka dinamikája. Hosszabb időskálán a jég egy viszkózus, összenyomhatatlan folyadék, amely a gravitáció hatására a középső résztől a tengerparti rész felé áramlik. Ebben a modellben a H(x) jégprofil stacionárius alakja dinamikusan valósul meg; a középső területeken hóesés hatására növekvő jégmennyiséget a part mentén bekövetkező hóolvadás kompenzálja. A jégsapka alakjával kapcsolatban továbbra is használjuk a 4(b). és 4(c). ábrán szereplő egyszerűsítéseket, és még alkalmazzuk a következő feltevéseket is modellünkben:

1) A jég az (x, z) síkban áramlik, és a jégválasztó vonaltól (az y tengelytől) távolodik.

2) Középen a hó
esések miatti jégképződéscsebessége (méter/év) állandó.

3) A jég csak a partmenti $x = \pm L$ területeken, olvadás útján hagyja el a szigetet.

4) A jég áramlási sebességének $v_x = dx/dt$ vízszintes (x irányú) komponense a z magasságtól független.

5) A jég áramlási sebességének $v_z = dz/dt$ függőleges (z irányú) komponense x-től független.

Vizsgáld csak azt a $|x| \ll L$ középső tartományt a jégsapka tetején, ahol a jégtakaró vastagsága alig változik, közel állandónak tekinthető, azaz $H(x) \approx H_{\rm m}$.

3.3. A tömegmegmaradást használva határozd meg a jég áramlásának v_x vízszintes sebességkomponensét a c, x és $H_{\rm m}$ mennyiségek függvényében! (0,6 pont)

A jég összenyomhatatlanságának feltevéséből, (tehát abból, hogy a jég $\rho_{jég}$ sűrűsége állandó), és a tömegmegmaradásból az alábbi összefüggés következik a jég áramlási sebességének komponenseire:

$$\frac{\mathrm{d}v_x}{\mathrm{d}x} + \frac{\mathrm{d}v_z}{\mathrm{d}z} = 0$$

3.4. Add meg, hogyan függ a jégfolyam sebességének v_z függőleges komponense a z magasságtól! (0,6 pont) Egy kis jégdarab, amely kezdetben a jégfelszín (x_i, H_m) pontjában található, az idő múlásával a jégáram részeként egy z(x) pályán (trajektórián) mozog a függőleges (x, z) síkban.

3.5. Vezesd le ennek a pályának a z(x) egyenletét!

(0,9 pont)

Kor- és éghajlat-indikátorok a mozgó jégsapkában. A jégfolyam $v_x(x)$ és $v_z(z)$ sebességkomponensei alapján megbecsülhető egy adott $H_m - z$ mélységben található jégdarab $\tau(z)$ kora.

3.6. Vezesd le a közvetlenül a jégválasztónál (x = 0) az alapkőzettől mért z magasságban található jégdarab $\tau(z)$ korát! (1,0 pont)

Grönland jégtáblájának mélyére fúrva az egymásra fagyott múltbéli hórétegeken áthatoló jégmagok (hosszú, henger alakú jégtömbök) emelhetők ki. Az ilyen jégmagok analizálásával feltárhatók a múltbeli éghajlatváltozások, melyek egyik legjobb indikátora a δ^{18} O mennyiség, amit a

$$\delta^{18} \mathcal{O} = \frac{R_{\rm jég} - R_{\rm ref}}{R_{\rm ref}} \, 1000 \, \%_0$$

kifejezés definiál, ahol $R = [{}^{18}\text{O}]/[{}^{16}\text{O}]$ jelöli az oxigén két stabil izotópjának, az ¹⁸O-nak és az ¹⁶O-nak a relatív gyakoriságát. Az R_{ref} referenciaérték az Egyenlítő környéki óceáni vizekben található izotóp-összetételen alapszik.

5. ábra. (a) A hóban mérhető δ^{18} O érték és az adott évi átlagos felszíni T hőmérséklet megfigyelt kapcsolata. (b) A δ^{18} O érték a jég felszínétől mért $H_{\rm m} - z$ mélység függvényében egy, a jégválasztónál ($H_{\rm m} = 3060$ m), a felszíntől az alapkőzetig érő jégmag esetén

A grönlandi megfigyelések szerint a hórétegekben a δ^{18} O érték jó közelítéssel lineárisan változik a hőmérséklettel (lásd az 5(a). *ábrát*). Feltéve, hogy ez az összefüggés mindig igaz volt, egy jégmagból $H_{\rm m} - z$ mélységben nyert δ^{18} O érték jó becslést szolgáltathat a Grönland környékén ezelőtt $\tau(z)$ idővel uralkodó T hőmérséklet értékére.

Egy 3060 m hosszú grönlandi jégmagon végzett δ^{18} O mérések kimutatták, hogy 1492 m mélységben a δ^{18} O érték hirtelen ugrik (5(b). ábra), jelezve az utolsó jégkorszak végét. A jégkorszak 120 000 éve kezdődött (ez az időpont 3040 m-es mélységnek felel meg), a jelenlegi jégkorszak-közti időszak pedig 11 700 éve kezdődött (ami 1492 m mélységnek feleltethető meg). Tegyük fel, hogy ez a két időszak különböző jégképződési sebességgel írható le: c_{jk} (a jégkorszakban) és c_{ig} (a jégkorszak-közti, ún. interglaciális időszakban). Feltehetjük azt is, hogy H_m értéke állandó volt az utóbbi 120 000 évben.

3.7a. Határozd meg a c_{jk} és c_{ig} jégképződési sebességeket!

(0.8 pont)

3.7b. Az 5. ábra adatait felhasználva határozd meg a jégkorszakból a jégkorszak utáni időszakba történő átmenetkor bekövetkezett hőmérsékletváltozást! (0,2 pont)

Tengerszint-emelkedés a grönlandi jégsapka olvadása miatt. A grönlandi jégtakaró teljes elolvadása az óceánok vízszintjének globális emelkedéséhez vezetne. E szintemelkedés durva becsléseként egyszerűen feltehetjük, hogy a Föld óceánjainak teljes felületén, $A_{\text{oceán}} = 3.61 \cdot 10^{14} \text{ m}^2$ -en, mindenhol ugyanannyival emelkedik meg a vízszint. **3.8.** Számítsd ki a grönlandi jégtakaró teljes elolvadása esetén bekövetkező átlagos vízszintemelkedést, ha annak jelenlegi területe $A_{\rm G} = 1,71 \cdot 10^{12} \text{ m}^2$ és $S_b = 100 \text{ kPa}!$ (0,6 pont)

A nagy tömegű grönlandi jégsapka gravitációsan vonzóerőt fejt ki a környező óceánra. Ha a jégtakaró elolvad, ez a lokális dagály megszűnik és Grönland közelében a tengerszint lesüllyed. Ez az effektus részben ellensúlyozza az előbb kiszámolt szintemelkedést.

A gravitációs vonzás vízszintre gyakorolt hatása nagyságának megbecsléséhez modellezzük a grönlandi jégtakarót egy földfelszínen elhelyezkedő, a teljes grönlandi jégtakaróval megegyező tömegű pontszerű testtel! Koppenhága a Föld felszíne mentén mérve 3500 km-re fekszik ettől a pontszerű testtől. Feltehető, hogy a Föld a pontszerű test nélkül gömbszimmetrikus és egész felszínét, $A_{\rm Föld} = 5,10 \cdot 10^{14} \text{ m}^2$ -t óceán borítja. A Föld forgásából származó minden effektus elhanyagolható.

3.9. A modell keretein belül határozd meg a $h_{\text{CPH}} - h_{\text{OPP}}$ különbséget, azaz a tengerszintek különbségét Koppenhága (h_{CPH}) és a Grönlanddal a földátmérő mentén átellenben (azaz a Grönlandtól legtávolabb) lévő földrajzi pont (h_{OPP}) között! (1,8 pont)

Fénysebesség vákuumban	$c = 2,998 \cdot 10^8 \text{ m s}^{-1}$
$\mathrm{Planck} ext{-}\mathrm{\acute{a}lland\acute{o}}/(2\pi)$	$\hbar = 1,055 \cdot 10^{-34} \mathrm{Js}$
Gravitációs állandó	$G = 6.67 \cdot 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$
Nehézségi gyorsulás	$g = 9.82 \text{ m s}^{-2}$
Elemi töltés	$e = 1,602 \cdot 10^{-19} \text{ C}$
Vákuum permittivitás	$\varepsilon_0 = 8,854 \cdot 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$
Elektron tömege	$m_{\rm e} = 9,109 \cdot 10^{-31} \ {\rm kg}$
Avogadro-szám	$N_{\rm A} = 6,022 \cdot 10^{23} \text{ mol}^{-1}$
Boltzmann-állandó	$k_{\rm B} = 1,381 \cdot 10^{-23} \mathrm{JK^{-1}}$
Meteoritkő fajhője	$c_{\rm k\delta} = 1.2 \cdot 10^3 {\rm J kg^{-1}K^{-1}}$
Meteoritkő hővezetési tényezője	$k_{\rm k\delta} = 2.0 \ {\rm W m^{-1} K^{-1}}$
Meteoritkő sűrűsége	$\rho_{\rm ko} = 3.3 \cdot 10^3 \rm kg m^{-3}$
Meteoritkő olvadáspontja	$T_{k\delta} = 1.7 \cdot 10^3 \text{ K}$
Meteoritkő olvadáshője	$L_{\rm k6} = 2.6 \cdot 10^5 {\rm Jkg^{-1}}$
Ezüst moláris tömege	$M_{\rm Ag} = 1,079 \cdot 10^{-1} \ \rm kg \ mol^{-1}$
Ezüst sűrűsége	$ \varrho_{\rm Ag} = 1.049 \cdot 10^4 \rm kg m^{-3} $
Ezüst fajhője	$c_{\rm Ag} = 2,40 \cdot 10^2 {\rm Jkg^{-1}K^{-1}}$
Víz moláris tömege	$M_{\rm viz} = 1,801 \cdot 10^{-2} {\rm kgmol^{-1}}$
Víz sűrűsége	$ \varrho_{\rm víz} = 0.998 \cdot 10^3 \rm kg m^{-3} $
Víz hőkapacitása	$c_{\rm víz} = 4,181 \cdot 10^3 {\rm Jkg^{-1}K^{-1}}$
Víz forráshője	$L_{\rm víz} = 2,260 \cdot 10^6 \ {\rm J kg^{-1}}$
Víz forráspontja	$T_{100} = 100 \ ^{\circ}\text{C} = 373,15 \text{ K}$
Jég, gleccser sűrűsége	$ ho_{ m jég} = 0.917 \cdot 10^3 \ { m kg m^{-3}}$
Gőz fajhője	$c_{\rm g\delta z} = 2,080 \cdot 10^3 {\rm Jkg^{-1}K^{-1}}$
Föld tömege	$m_{\rm F} = 5.97 \cdot 10^{24} \ {\rm kg}$
Föld sugara	$R_{\rm F} = 6.38 \cdot 10^6 {\rm m}$
Nap tömege	$m_{\rm N} = 1,99 \cdot 10^{30} \text{ kg}$
Nap sugara	$R_{\rm N} = 6,96 \cdot 10^8 {\rm m}$
Átlagos Nap–Föld távolság	$a_{\rm N-F} = 1,50 \cdot 10^{11} {\rm m}$

Fizikai állandók táblázata